Topic Results: Beaver History
Back to Currated List of TopicsEvolution of woodcutting behaviour in Early Pliocene beaver driven by consumption of woody plants
Modern beavers (Castor) are prolific ecosystem engineers and dramatically alter the landscape through tree harvesting and dam building. Little is known, however, about the evolutionary drivers of their woodcutting behaviour. Here we investigate if early woodcutting behaviour in Castoridae was driven by nutritional needs. We measured stable carbon and nitrogen isotopes (δ13C and δ15N) of coeval subfossil plants and beaver collagen (Dipoides sp.) from the Early Pliocene, High Arctic Beaver Pond fossil locality (Ellesmere Island), in order to reconstruct Dipoides sp. diet. Isotopic evidence indicates a diet of woody plants and freshwater macrophytes, supporting the hypothesis that this extinct semiaquatic beaver engaged in woodcutting behaviour for feeding purposes. In a phylogenetic context, the isotopic evidence implies that woodcutting and consumption of woody plants can be traced back to a small-bodied, semiaquatic Miocene castorid, suggesting that beavers have been consuming woody plants for over 20 million years. We propose that the behavioural complex (swimming, woodcutting, and consuming woody plants) preceded and facilitated the evolution of dam building. Dam building and food caching behaviours appear to be specializations for cold winter survival and may have evolved in response to late Neogene northern cooling.
Human-beaver cohabitation in the Early and Mid-Holocene of Northern Europe
For thousands of years, beavers had a big influence on the Dutch ecosystem and the people that lived there. This is the conclusion of research by archaeologist Nathalie Brusgaard. The rodents were used for food, clothing and tools, and created a landscape hospitable to many other species.
Prescott Peninsula Beaver Survey Results – 2017
Prescott Peninsula Beaver Survey Results – 2021
Prescott Peninsula Beaver Survey Results – 2022
The oldest semi-aquatic beaver in the world and a new hypothesis for the evolution of locomotion in Castoridae
The North American rodent fossil record includes hundreds of species representing both an incredible taxonomic diversity and great ecological disparity. Although it is during the Oligocene that taxonomic diversity first peaks, it is not until the Miocene, almost 10 Myr later, that many ecologies, particularly locomotory ecologies, are recorded. Here, I present a new Oligocene-aged species of beaver from Montana, Microtheriomys articulaquaticus sp. nov., which represents the oldest semi-aquatic rodent in North America and the oldest amphibious beaver in the world, pushing the advent of semi-aquatic ecology in beavers by 7 Myr. I also provide morphological data supporting a terrestrial ecology for the sister taxon to Castoridae. Together with existing data, these findings lead to a new hypothesis for the evolutionary ecology of castorids whereby swimming was exapted from burrowing during the Oligocene. This evolution of semi-aquatic locomotion may have taken place in North America instead of Eurasia. It started in small beavers with gigantism achieved only much later. Indeed, body size evolution in castoroids follows a directional drift. Beavers obey Cope’s rule, a selection for larger size over time that appears associated with semi-aquatic ecology and may well explain their low modern diversity.