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A mathematical model for the dynamics of a harvested population of beaver (Castor 
canadensis) was developed based on the natural history and biochronology of the species. This 
discrete-time, deterministic model breaks the annual cycle of a beaver population into six periods 
and tracks the transitions between periods for forty sex/age classes. Density-dependent effects 
are incorporated in breeding rates of the young age classes and in dispersal mortality rates. 
General results from simulations with the model qualitatively matched results from several 
observational studies. Specific results from the model, however, included phenomena that have 
not yet been studied in the field: (1) the average colony size was an increasing function of 
occupancy rate (a measure of colony density); (2) an early harvest (prior to breeding) caused a 
greater reduction in the growth rate of the population than a late harvest when the population 
density was low, but the pattern was reversed at high population density; and (3) the occupancy 
rate remained near 1.0 (all potential colony sites filled) for sustained harvest rates below about 
20%, and decreased sharply with increases in harvest rate above that threshold. In the range of 
occupancy rates typically sought through management, the population size and occupancy rate 
were very sensitive to harvest rate, suggesting that there is considerable potential to control 
population size through adjustment of the harvest. Sensitivity analysis was used to identify 
priorities for parameter estimation in this model. A single parameter, the base adult litter size, 
was identified as the most important determinant of population growth rate, and hence, the 
parameter that should be most carefully estimated. The dynamics of this model depended 
heavily on the way density-dependent dispersal mortality was expressed, thus providing 
motivation for specific field studies to confirm or refute the predictions obtained through 
simulation. 
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1 Introduction 

In this paper I develop and explore a comprehensive 
population model for beaver (Castor canadensis) 
based on the biology of the species. There are four 
major purposes in building such a modeL First, I 
endeavor to synthesize existing knowledge about 
beaver biology so that it can be examined holistically. 
Such a synthesis can shed light on population 
dynamics, test long-held assumptions, and expose 
inconsistencies or gaps in current knowledge. 
Second, this model can be used to generate 
hypotheses to help guide field studies. Third, this 
model can help prioritize parameter estimation 
needed for management purposes by identifying those 
parameters whose uncertainty has the greatest effect 
on population dynamics of interest. Ultimately, this 
prioritization can also be used to guide refinement of 
the model itself, in an effort to produce a model that 
is useful to managers and that captures the key 
dynamics. Fourth, this model can be used as a 
simulation device for testing management policies. 
By using the detailed population model to represent 
the "truth" of nature, Runge (1999) examined the 
effects on management outcomes of having only 
partial knowledge of the truth and of making major 
changes to the way management is carried out. In this 
paper, I examine previous beaver population 
modeling efforts, develop a model based on 
biological information in the literature, then conduct 
several simulation experiments with the model to 
explore its dynamics. 

The model developed is a single-species, 
discrete-time, deterministic population model (though 
provisions are made to incorporate environmental 
stochasticity). Males and females are distributed 
among twenty age classes, the life span of beaver. 
The sex/age class is the basic unit in the model, but 
colony structure is incorporated to some extent. 

This paper was extracted from Chapter 3 of 
Runge ( 1999) with some minor modifications. I 
gratefully acknowledge the help of Aaron N. Moen, 
Charles E. McCulloch, Deborah H. Streeter, and 
Robert F. Gotie in the development of this work. 

2 Previous Efforts to Model Beaver Populations 

Surprisingly, for a species that has been studied so 
heavily, very few attempts at beaver population 
modeling have been published in the peer-reviewed 
literature. There is really only one full-fledged 
population model for beaver (Molini et al. 1981). 
There certainly must be quite a number of population 
models of varying complexity in use by beaver 
managers, and accounts of these may be found in 

internal documents, but any knowledge of them is not 
widely available. In addition, there are references to 
several theses and dissertations that contain 
information on population dynamics, but much of this 
work was never published. There is, however, a 
tremendous amount of information about particular 
aspects of population dynamics (see review in Runge 
1999), information that needs to be synthesized into a 
flexible, and biologically relevant, population model 
for beaver. 

2.1 Life tables and related calculations 

The most basic information about population 
dynamics is not so much a model but a description of 
a population. For instance, calculation of survival 
and fecundity rates in a life table describes a 
population, but it takes an additional logical step to 
assemble a model from this. There are a number of 
studies that provide some fairly complete descriptions 
of beaver populations. Payne (1984a, 1984b) 
presents relative mortality and fecundity estimates for 
beaver in Newfoundland, breaking the population into 
age-classes, but not differentiating between the sexes. 
These data are certainly extensive, but as pointed out 
by Lancia and Bishir (1985), Payne (1984a) makes 
some serious inferential errors. Nevertheless, with a 
little effort, and a few assumptions less radical than 
Payne's, a Leslie matrix model could be constructed 
from this information. 

Novak (1977, 1987a) and Swenson et al. (1983) 
provide formulas for estimating the average colony 
size from age-specific harvest data. Though this 
concerns population estimation, we might begin to 
think of these calculations as models because of some 
assumptions about how the colonies are structured. 
Specifically, they rely on the fact that a colony 
contains at most two reproductively mature adult 
beaver, and use this fact to convert the proportion of 
adults in the harvest into an estimate of the average 
colony size. Though this alone does not make such a 
calculation a population model, it hints at an 
approach that is used in some population models for 
beaver (e.g., Molini et al. 1981). This example, and 
the one before it, are characteristic of many studies of 
population dynamics of beaver which stop short of 
assembling their results into population models. 

2.2 Logistic models 

A number of studies have suggested that beaver 
productivity is density-dependent (Pearson 1960, 
Gunson 1970, Payne 1984b), so it is natural that a 
number of authors have mentioned a logistic model as 
appropriate for beaver (Nash 1951, Lancia and Bishir 
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1985, Baht eta!. 1993). Lancia and Bishir (1985) fit 
a logistic model to their data from a nonexploited 
population from Prescott Peninsula, Massachusetts, 
and argued that the intrinsic rate of increase should be 
between 0.35 and 0.45 for most beaver populations. 
They were using this model as an example to 
illustrate their points in an argument about something 
else, however, and did not seem to intend that such a 
simplistic and empirical model be taken too seriously. 
Nevertheless, Baht et al. (1983) took them at face 
value and used a logistic model (with Lancia and 
Bishir's point estimate for the rate of increase) in the 
analysis of a beaver management problem. 

2.3 Colony models 

In an unpublished model used internally in the New 
York State Department of Environmental 
Conservation (NYSDEC), Robert F. Gotie (pers. 
com.) took a very different approach to modeling a 
beaver population. Responding to studies that 
suggested that beaver population growth depends on 
colony occupation rates (e.g., Parsons and Brown 
1979), Gotie built a model with the colony, rather 
than the individual, as the central unit of the 
population. Instead of having a structured population 
with individuals divided into age-classes, Gotie's 
model has a structured population with colonies 
divided into single, pair, or family classes. 
Transitions between these classes take the place of 
mortality and fecundity-for instance, two single 
colonies can merge to become a pair colony (through 
mating), a pair colony can become a family colony 
(through reproduction), a family colony can produce 
a single colony while remaining a family colony 
(through dispersal of two-year-olds), etc. Most of 
Gotie's estimates of these class transitions are based 
on only one study (Payne 1982) and would need more 
justification and support to be convincing. 
Nevertheless, this model offers the important 
reminder that beaver life-history depends critically on 
the colony. 

Gotie's model can be described as a matrix 
model, with the state of the system being the number 
of colonies in each of the three classes, and a 3 x 3 
transition matrix being used to calculate the state of 
the system in the next time period. By treating the 
transition rates as transition probabilities, this could 
be converted into a Markov model. To be more 
realistic, however, I would increase the number of 
possible classes to include a much finer structure to 
the population. For instance, I would have several 
"single" classes: single yearling male, single yearling 
female, single adult male, single adult female. The 
"family" classes would be fairly complex, 
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distinguished by the age and sex composition of the 
colony. The transitions would then look, for instance, 
at the probability of 2-breeding-adult, 2-yearling, 4-
kit colony becoming a 2 breeding-adult, 2-yearling 
colony (through dispersal or death of the yearlings 
and 50% survival of the kits). In essence, this would 
turn into an individual-based model, with the status of 
the individual's colony being a key consideration in 
determining the probability of survival or 
reproduction. Estimation of some of the transition 
probabilities would be almost sheer speculation, and 
there would be a great many to estimate. Thus, while 
such a model might be of interest on theoretical 
grounds, I would not pursue it for practical purposes. 

2.4 Stochastic models 

The most sophisticated and carefully considered 
beaver population model available in the published 
literature is that of Molini et al. (1981). This model, 
which was designed to represent a nonexploited, 
growing population, incorporates demographic 
stochasticity and density-dependence in an age
structured depiction of the female segment of the 
population. Demographic stochasticity is included in 
five life-history events: survival, dispersal, and pair 
formation are all modeled with binomial distributions; 
replacement of deceased females in established 
colonies with subadult females is modeled with a 
combinatoric box-and-ball type of distribution; and 
litter size is modeled with an empirical distribution. 
The binomial probabilities used for the dispersal rate 
and the pair formation rate are both density
dependent. Dispersal is assumed to be a decreasing 
function of density-as density increases and fewer 
uncolonized sites are available, two-year-olds reduce 
their risks by delaying dispersal. The pair formation 
rate among dispersed sub-adults also depends on the 
availability of uncolonized sites. As the density 
increases and fewer sites are available, dispersed 
beaver are unable to form a pair and establish a 
colony, and are assumed to die. At saturation 
densities, most of the mortality in the population is of 
these dispersed sub-adults that failed to form a pair. 
All other survival rates are quite high (> 95% ). Thus, 
the major limiting resource in this model is the 
number of potential colony sites, and the model 
shows sigmoid growth. If the model were expanded 
to include harvesting, so the density could be 
artificially maintained at a low occupancy rate, this 
effect of extremely high mortality of sub-adults would 
be substantially reduced. A final component of 
interest in this model is the mortality of all kits and 
yearlings in a colony in which the adult females dies 
and is not replaced by a sub-adult. 
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Simulations with this model produced results that 
roughly resembled the observed population trajectory 
in Prescott Peninsula, Massachusetts (Molini et a!. 
1981). In addition, the equilibrium age-distribution 
and age-specific survival rates were supported by 
other observations in the literature, although sub-adult 
mortality seemed to be higher than typically reported. 
The simulations showed considerable variation as a 
result of the demographic stochasticity, although 
Molini et a!. did not look at how this variation was 
affected by the maximum number of colony sites (50 
in their simulations). I would expect that this 
variation would be less significant across larger areas 
where the maximum colony number, and hence, 
population size, was much higher. It is not clear how 
relevant the two major forces of this model, density
dependence and demographic stochasticity, would be 
to the manager of a large, exploited population that 
was held far below the saturation level. 

3 Population Model 

I have taken components of the aforementioned 
models and combined them with other insights about 
beaver population dynamics from the literature to 
develop a comprehensive, biologically-based 
population model. The context underlying this model 
is a large, managed beaver population that is actively 
trapped and maintained at a density below any natural 
saturation level ("carrying capacity"). 

The population model developed herein treats the 
sex/age class as the primary unit and tracks the 
dynamics of the population through 6 periods in each 
successive annual cycle. The population size in age 
class a and sex class s, during period p of year t is 
given by x( a,s,t,p). Thus, the total population size 

during period p of year t is 

LLx(a,s,t,p). (1) 
a s 

The computer code based on this model, used 
subsequently for simulation, can be found in the 
appendices of Runge ( 1999) or obtained from the 
author in electronic form. 

3.1 Biochronology 

The concept of biochronology, introduced by Moen 
(1973), refers to the sequence of significant events 
that occur in the life of an individual organism. The 
model is structured around the natural biochronology 
of beaver, shown schematically in Figure 1. The 
annual cycle begins with the post-parturition 
population, the population immediately following the 
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birth of kits. In the northeast United States, this 
occurs in early June (Jenkins and Busher 1979). The 
population suffers natural mortality through the 
summer and early fall as a result of a number of 
factors, including dispersal and predation, and in kits, 
malnourishment, to produce the post-dispersal 
population. By this point in the annual cycle, most 
dispersal is complete and the beavers begin to prepare 
for winter. Over the next 8 months, the population 
undergoes natural mortality due to a number of 
factors, collectively called "winter mortality," 
including starvation, exposure to the elements, and 
predation, to produce the pre-parturition population. 
At this point, all living individuals are promoted to 
the next age class, and kits are born to produce the 
post-parturition population, and the cycle begins 
again. 

Human intervention in this biochronology, that 
is, wildlife management, adds two additional forms of 
mortality and inserts one monitoring event per annual 
cycle, as shown in the schematic in Figure 2. The two 
forms of mortality are nuisance control and regulated 
fur harvest, the latter divided into an early and a late 
season. The monitoring, when practiced, usually 
occurs after leaf fall and before freeze-up (Hay 195 8), 
and typically consists of aerial surveys. As before, 
the annual cycle begins with the post-parturition 
population (period 1, p = 1). Nuisance control from 
this point until the early harvest season (around 
October 1) removes animals to produce the post
weaning population (p = 2). This includes the death 
of kits as a result of the removal of their mother 
through nuisance control prior to weaning. Natural 
summer mortality acting during the next transition 
results in the pre-harvest population (p = 3, 
equivalent to the post-dispersal population in the 
absence of human intervention). Since aerial counts 
are usually made at this time, this population is also 
the population which is surveyed. Early harvest and 
nuisance control, acting throughout the late fall and 
early winter, produce the post-early-harvest 
population (p = 4). This population then undergoes 
natural winter mortality to become the pre-late
harvest population (p = 5). Late harvest and nuisance 
control, acting throughout the late winter and early 
spring, produce the pre-parturition population (p = 
6). Living individuals are promoted and kits are born 
to produce the post-parturition population (p = 1), 
and the cycle begins again. 

Several details of the biochronology chosen for 
the population model require comment. First, the 
harvest is broken into two periods, early and late, to 
acknowledge that harvest is typically bimodal with 
peaks occurring during open water periods at the 
beginning and end of the season, and to reflect the 
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Post -dispersal 
Population 

Summer mortality 

Post-parturition 
Population 

Winter mortality 

RepmduoHo~ Pre-parturition 
Population 

Figure 1. Biochronology of the beaver population model in the absence of human intervention. The circles 
represent the population at three periods within the annual cycle and the arrows represent the events which change 
the population. Compare to Figure 2. 

management practice of extending the season or 
having a late season to add to a low early harvest. 
From a biological standpoint, it is important to 
distinguish these periods, since if the male of a pair is 
trapped, how that affects reproduction depends on 
whether the male was removed before or after 
breeding. Second, winter mortality is placed between 
these two periods during the time when the weather is 
coldest, the ice is thickest, and the risk of death due to 
exposure or lack of access to food is greatest. While 
natural mortality and harvest act simultaneously from 
late fall to early spring, the harvest tends to be lower 

during the coldest part of winter. It is reasonable to 
expect natural mortality rates due to cold, ice, and 
inability to reach a food cache to be highest at this 
time, and thus, modeling these factors as separate is 
not a great deviation from reality. Third, a similar 
separation of nuisance control and natural summer 
mortality is made in the model. Animals taken by 
nuisance control between parturition and the 
beginning of the trapping season are removed from 
the modeled population first, and the remaining 
individuals face natural mortality. While natural 
mortality and nuisance control actually act simultan-
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/ 
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Figure 2. Biochronology of the beaver population model in the presence of human intervention. The circles 
represent the population at the six periods within the annual cycle and the arrows represent the events that change the 
population 

eously, constructing the model this way reflects the 
fact that some of the animals that would have died 
from natural causes were already taken by nuisance 
control. 

3.2 Population structure 

This population model structures the beaver 
population into forty sex/age classes. The individuals 
in these classes are also grouped into colonies. 

Age classes. Twenty age classes are used in the 
model, age 0 (kits), age 1 (yearlings), age 2 (two
year-olds), and ages 3-19 (adults). Kits are in age 

class 0 at birth and remain there until the following 
parturition period, when they advance to age class 1. 
All other age classes also advance at the time of 
partuntwn. Twenty age classes are used because 
each age class in the potential life span of an 
individual needs to be represented in order to capture 
the many age-related population dynamics. 

Sex classes. Each of the twenty age classes is 
further divided into two sex classes, male and female. 
The number of male yearlings alive in period p of 
year t, for instance, is designated as x(l, M, t, p) . 

Colony structure. Tjle population dynamics are 
modeled at the level of the sex/age class, and the 
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number of colonies is calculated from this for two 
reasons: first, the density dependence (see "Density 
dependence," p. 9) is governed by the fraction of 
potential colony sites that are occupied (the 
occupancy rate); and second, census methods for 
beavers typically count colonies, not individuals. The 
number of colonies is determined by summing the 
number of potentially breeding females in the pre
harvest population (period 3). Since females that are 
1.5 years old (yearlings, age class 1) in the fall 
sometimes disperse and breed if the population 
density is low, their breeding rate needs to be taken 
into consideration, as does that of age class 2 females. 
Females in age class 3 and above are assumed to have 
dispersed and formed colonies. Thus, 
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b1x(l, F ,t ,3) +b2x(2, F ,t ,3) + L,x(a,F,t ,3) (2) 
a=3 

gives the number of colonies in year t, where b1 and 
b2 are the breeding rates for yearling and two-year
old females in year t. These breeding rates are 
discussed in more detail below. Note that this 
method of calculating the number of colonies from 
the age structure assumes that two adult females are 
never found in the same colony and that a colony 
always contains a breeding female, assumptions that 
have been supported in field studies (Bergerud and 
Miller 1977). 

3.3 Initialization 

In an iterative model such as this, an initial sex/age 
structure needs to be specified as a starting point from 
which calculations can be made. For the model to be 
realistic, the initial population needs to be represented 
with a biologically reasonable population structure. 
Since the survey is usually taken of the pre-harvest 
population, the initial population is constructed for 
period 3 (p = 3). The structure of this initial 
population is controlled through five parameters: the 
total size of the population, the overall sex ratio, and 
the fraction of kits, yearlings and two-year-olds in the 
population. The fraction of adults in the population is 
found by subtraction. The total population is 
subdivided proportionally into male and female kits, 
yearlings, and two-year-olds. To initialize all of the 
adult age classes, it is not acceptable to divide the 
adults equally among all age classes. Rather, the 
adult age classes need to reflect the declining 
proportions due to mortality, based on an average 
total annual adult mortality rate (m, default 0.3). The 
adult age classes are then initialized so that the ratio 
of any age class to the previous age class is the 
survival rate (1 - m) corresponding to this mortality 
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rate. This is done by noting that the numbers of 
adults in each age class form a geometric series with 
parameter (1 - m), and the total number of adults is a 
partial sum of this geometric series. Specifically, the 
number of adults is given by 
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L,L,x(a,s,t,3) (3) 
a=3 s 

where 

x(a+1,s,t,3)=(1-m)·x(a,s,t,3). (4) 

Equation 3 can thus be written as 

19 

L,L,x(3,s,t,3)(1-m)a-3 , (5) 
a=3 s 

which is a partial geometric series that can be 
simplified to 

[~ ][1-(1-m) 17
] .L.i x(3, s, t ,3) . 

s 1-(1-m) 
(6) 

Setting equation 6 equal to the known total number of 
adults and solving for the first sum results in the 
number of adults in age class 3. These are then 
divided between the two sexes. From there, equation 
4 is used to calculate the number of adults in all other 
sex/age classes. 

This initialization requires six parameters (total 
population size, fractions of kits, yearlings, and two
year-olds, fraction female, and average annual adult 
mortality). The population initialized in this manner 
will not necessarily match the sex/age class 
distribution of a real population or of one produced 
by the model after several iterations for three reasons: 
first, the same sex ratio is used across all age classes; 
second, all adults are assumed to be equally 
vulnerable, that is, have the same mortality rate; and 
third, the last five parameters may not be correct. 
Nevertheless, if the last five parameters are chosen 
carefully, the initialized population is expected to 
have a reasonable sex/age structure. Where needed, a 
more detailed initialization method repeats the 
following set of steps until a stable sex/age 
distribution is found: the population is initialized as 
above, run through the model for one time step, and 
reinitialized with the resulting age and sex 
distributions. 

3.4 Early harvest and nuisance control 

In this and following sections, the details of the steps 
of the model are described chronologically, beginning 
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with the pre-harvest population. As noted above, the 
population is initialized at the pre-harvest period (p = 
3). The transition from the pre-harvest population (p 
= 3) to the post-early-harvest population (p = 4) is a 
result of the impacts of early harvest and nuisance 
control. In the northeast United States, this time 
period runs from around October to February. The 
model requires the specification of the known total 
harvest and the known total number of beaver 
removed by nuisance control. 

Harvest. The total number of harvested animals 
is removed from the population using sex- and age
specific relative harvest rates, referred to herein as 
harvest vulnerabilities. Most studies have shown that 
harvest is not usually biased by sex (Payne 1982) or 
age (Novak 1987 a), thus the default values for all the 
harvest vulnerabilities are 1, but the option is 
included in the model to specify other values. 

Nuisance control. The beavers removed by 
nuisance control during this transition are removed 
from the modeled population proportionally across all 
sex/age classes. In nuisance control situations, whole 
colonies are typically removed. Provided that 
colonies removed are representative of all the 
colonies, colony composrtlon should reflect 
population composition, and there should be no bias 
by sex or age in the beavers removed by nuisance 
control. 

Parameters and equations. The model requires 
specification of the total number harvested, H(t, 3), 
and the total number removed by nuisance control, 
N(t, 3). The harvest vulnerabilities are given by vH(a, 
s, t), and represent relative rates of harvest between 
sex/age classes. The default value for all of these is 
1. The harvest rate for a given sex/age class is 

( ) - vH(a,s,t)H(t,3) 
h a,s,t,3 - ~ . (7) 

LJ vH(a,s,t)x(a,s,t,3) 
a,s 

Since it is assumed there is no bias in the nuisance 
control, there is only one nuisance control rate, 

( 3) = N(t,3) 
n t, ~ . 

LJ x(a, s,t ,3) 
(8) 

a,s 

The period 4 population is calculated, for all a and s, 
as 

x(a,s,t,4) = x(a,s,t,3) ·(1-h(a,s,t,3) -n(t,3)) (9) 

with adjustments made to be sure that the sum of the 
harvest and nuisance rates does not exceed 1.0 for 
any sex/age class. 
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3.5 Winter mortality 

The transition from the post-early-harvest population 
(p = 4) to the pre-late-harvest population (p = 5) is a 
result of the impacts of winter mortality. As noted 
above, this transition reflects the fact that during the 
coldest part of the winter, when ice is thickest, the 
harvest rates drop and much of the mortality can be 
attributed to natural causes. In the northeast United 
States, this transition occurs from mid-January to late 
February. Mortality rates for male and female kits, 
yearlings, two-year-olds, three-year-olds, and adults 
need to be specified. In addition, vulnerability curves 
are used to represent the relative mortality in the 
female and male adult age classes. 

Mortality. Mortality rates may differ between 
sexes and between age classes. In the kit, yearling, 
two-, and three-year-old age classes, the number that 
survive is the product of the initial number and the 
survival rate for that age class and sex. 

Adult vulnerability. For adults, a vulnerability 
curve reflects the relative mortality in different age 
classes (Figure 3). This relative mortality is 
multiplied by the base mortality rate to determine the 
mortality rate for a particular adult sex/age class. Of 
course, if this product is greater than 1.0, the 
mortality is truncated to 1.0. The model allows for 
different vulnerability curves for each sex. 

Parameters and equations. The model requires 
the winter mortality rates for male and female kits, 
mw(O, M, t) and mw(O, F, t), yearlings, mw(1, M, t) 
and mw(l, F, t), two- and three-year-olds (specified 
analogously), and adults, mw AM(t) and mw AF(t). 
Default values are shown in Table 1. In addition, 
vulnerability curves for male and female adults need 
to be constructed. Based on the age-specific 
mortality patterns of mammals in general, one might 
expect adult beaver vulnerability to rise slowly in the 
younger adults, then more sharply in the very old. 
Thus, the default vulnerability curve is modeled with 
a double exponential expression 

c (s)e-ki(s)a +c (s)e-k2(s)a 
v(a s) = 1 2 (10) 

, Ct(s)e-4ki(s) +c2(s)e-4k2(s) , 

which gives a vulnerability of 1.0 to age class 4. 
Note that the specified base adult mortality rate is the 
mortality rate for an age class with a vulnerability of 
1.0. The default values used for the parameters of 
this vulnerability curve are those found by fitting the 
curve to Payne's (1984a) data, and are the same for 
both sexes: c1 = 0.62, c2 = 3.3 x 10-8, k1 = 0.048, and 
k2 = 0.95. Because of the way the denominator of 
equation 10 adjusts the vulnerabilities, the actual 
values of c1 and c2 are not important, only their ratio. 
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Figure 3. Adult vulnerability curve. The mortality rate for an age 
class is found by multiplying the base adult mortality rate by the 
vulnerability for that age class. The open circles are the age-specific 
mortality rates calculated by Payne (1984a), adjusted so the fitted line 
gives a vulnerability of 1 for age class 4. The fitted line was found by 
nonlinear least squares regression (using SAS PROC NLIN), using a 
double exponential function. 

The period 5 population is calculated with 

x(a,s,t,5) = x(a,s,t,4)·(1-mw(a,s,t)) (11) 

for all sand for a :5: 3, and with 

x(a,s,t ,5) = x(a,s,t ,4) · (1- mw As (t) · v(a,s)) (12) 

for all s and for a > 3, subject to the constraint that 

mwA5 (t)·v(a,s) :5:1. (13) 

Table 1. Default winter mortality rates. The 
mortality rate for kits is based on a comparison of 
Svendsen (1980) and Gunson (1970), and that for 
yearlings is based on Svendsen (1980) and Molini et 
al. (1981). The default value used here is the average 
of the extremes reported by Boyce (1981, 20%, 
Alaska) and used by Molini et al. (1981, 0%, 
Massachusetts). 

Sex\A e 0 
Male 

Female 
0.073 
0.073 

1 
0.016 
0.016 

2 
0.100 
0.100 

3 
0.100 
0.100 

Adult 
0.100 
0.100 

3.6 Late harvest and nuisance control 

The transition from the pre-late-harvest population (p 
= 5) to the pre-parturition population (p = 6) is a 
result of the impacts of late harvest and nuisance 
control. In the northeast United States, this transition 
runs from about March to June. The model requires 
specification of the known total harvest and the 
known total number of beaver removed by nuisance 
control. Note that the late harvest season (if it exists) 
only lasts until late March, but nuisance control can 
continue until the date of parturition. 

The calculations for this transition are exactly 
analogous to those for the early harvest transition (see 
"Early harvest and nuisance control," page 6), and the 
same vulnerabilities are used. Letting H(t, 5) and N(t, 
5) represent the total number of animals removed by 
harvest and nuisance control during this time period, 
the harvest and nuisance control rates, h(a, s, t, 5) 
and n(t, 5), are calculated with equations analogous to 
7 and 8, respectively. Then, the period 6 population 
is calculated, for all a and s, as 

x(a,s,t ,4) = x(a, s,t ,3) · [1- h(a,s,t ,3)- n(t ,3)] (14) 

with adjustments made to be sure that the sum of the 
harvest and nuisance rates does not exceed 1.0 for 
any sex/age class. 
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3. 7 Reproduction 

The transition from the pre-parturition population (p 
= 6) to the post-parturition population (p = 1) is a 
result of all animals advancing in age class and of 
females giving birth. Unlike the other transitions in 
this model, this transition is treated as being 
instantaneous in time, thus assuming that all births 
occur at once. The following parameters are 
required: reproductive rates (in kits/litter) for 
yearlings and adults; the percentage of female kits in 
the litters; density-dependent relationships for the 
fractions of yearling, two-, and three-year-old females 
that breed; and a relative reproductive rate curve for 
adult females. 

Density dependence. A density dependent effect 
on reproduction has been noted in several studies 
(Henry and Bookhout 1969, Nordstrom 1972, 
Kudrisahov 1975, Vanden Berge and Vohs 1977, 
Swenson et al. 1983, Peterson and Payne 1986, see 
review in Runge 1999). In particular, when the 
occupancy rate is low, sexual maturation occurs 
earlier (Parsons and Brown 1979, Payne 1982, 
1984a). In the model, the user defines three density
dependence curves that relate the fractions of young 
females that breed to the occupancy rate (Figure 4). 
This curve assumes that there is a maximum fraction 
breeding up to a certain density, then a linear decline 
to a minimum fraction breeding. As there is no 
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evidence for density-dependence in breeding or 
pregnancy rates in older age classes, the model 
assumes that all females four and older potentially 
breed. 

Relative reproductive rates. Litter size in adult 
females increases with advancing age of the mother 
until about age 8, stays steady for a number of years, 
and then declines somewhat in the very old (Novak 
1987a, Payne 1984b). The model allows 
specification of the relative reproductive rates of 
females by age class. This relative rate is multiplied 
by the base adult litter size to arrive at the average 
litter size for a particular age class of females. The 
default relative reproductive rate curve uses a 
quadratic relationship that closely matches data found 
in the literature (Payne 1984b, Gunson 1967). Note 
that this curve has a maximum of 1 for females giving 
birth at ages 8 and 9, thus, the base adult litter size 
should be the average litter size for females of such 
ages, not for all females. 

Sex ratio at birth. The model assumes that the 
sex ratio at birth is not density dependent and is the 
same for all age classes of females. There is not 
convincing evidence in the literature that the female 
fraction in the litters is any different from 50%, which 
is the default value used in the model. 

Effect of early harvest on breeding. The 
reduction of pregnancy rates due to trapping of the 
male after pair-bonding but before breeding (i.e., 

0.9 
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Figure 4. Density-dependence of reproduction in the younger age
classes. The fraction of females breeding is shown for yearlings, two
year-olds, and three-year-olds. The user specifies the six marked points 
in order to define these three relationships. The default values were 
obtained from a synthesis of the literature (see Runge 1999). 
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early harvest) is modeled based on the following 
simple probabilistic argument. If a certain fraction, 
say h, of the male population is removed during the 
early time period, then of the reproductive females 
that survive that period, a fraction, 1 - h, will still 
have mates and may become pregnant. This 
relationship is applied in the same manner across all 
age classes. 

Parameters and equations. Two parameters 
directly govern litter size: the average litter size for 
yearlings that breed (l1(t)); and the base litter size for 
adults (lA(t)), which corresponds to the average litter 
size for a female age class with a relative 
reproductive rate of 1.0. Note that for the adult rate, 
the base litter size should take into account the 
fraction of adult females that do not successfully 
breed (that is, have litter sizes of 0), a fraction that is 
probably close to 0 in nonexploited populations. 
Several additional parameters are related to the 
fraction of young (a= 1, 2, and 3) females that breed: 
the number of potential sites in the area being 
modeled, K(t-1), the maximum and minimum fraction 
of females of age a that breed, bmax(a, t-1) and bmin(a, 
t-1), the occupancy rate at which age a breeding 
begins to decline, ocmin(a, t-1), and the occupancy 
rate at which age a breeding reaches its minimum, 
ocmax(a, t-1). The breeding rate parameters are 
expressed as having occurred in the previous time 
period, t-1, since breeding occurs before the 
transition to the post-parturition period. A curve for 

Table 2. Default values for reproductive parameters. 

10 

relative reproductive rate as a function of age of the 
female, r(a), needs to be defined. The final 
reproductive parameter is the fraction of kits born that 
are female, j{t). Default values for the reproductive 
parameters are shown in Table 2. 

All age classes in period 6 are advanced in 
period 1, thus 

x(a, s, t,l) = x(a -1, s,t -1,6) (15) 

for all s and 1 :::; a :::; 19. Note that the oldest 
individuals in the population, x(l9,s,t - 1, 6), are 
removed from the population at this point since there 
is no age class 20 for them to advance to. 

As noted above ("Colony structure," page 5), 
occupancy rate is determined at the time of the aerial 
survey, and is the number of active colonies divided 
by the number of potential sites. Thus, the occupancy 
rate is calculated for period 3 (of year t, say) and used 
in the reproduction calculations for period 1 of the 
next year (t + 1), 

2 19 

Lb(a,t)x(a, F,t,3) + L,x(a,F,t,3) 

oc(t) = a=! a=3 .(16) 
K(t) 

The fractions of yearling, two-, and three-year-old 
females that potentially breed are calculated from the 
occupancy rate as 

Parameter Default Value Source 
/1(t) 2.7 Henry and Bookhout (1969), Payne (1984b) 
lA(t) 4.5 Gunson (1967), Henry and Bookhout (1969), Payne 

(1984b), Dieter (1992) 
K(t) 500 (depends on the size of the area being modeled) 
j(t) 0.5 Hill (1982) 
k -0.006 analysis of Gunson (1967), Payne (1984b) 

agemax 8.5 analysis of Gunson ( 1967), Payne (1984b) 
hmaxO, t) 0.45 Peterson and Payne (1986) 
bm;n(l, t) 0.0 many, including Swenson et al. (1983) 
ocmin(l,t) 0.1 intuitive estimate 
ocmax(l,t) 0.4 Parsons and Brown (1979) 
bmax(2, t) 0.85 Peterson and Payne ( 1986) 
bmin(2, t) 0.0 Swenson et al. (1983) 
ocmin(2,t) 0.4 intuitive estimate 
OCmax(2,t) 0.9 Swenson et al. (1983) 
bmax(3, t) 0.85 Peterson and Payne (1986) 
bmin(3, t) 0.25 Swenson eta!. (1983) 
ocmin(3,t) 0.5 intuitive estimate 
ocmax(3,t) 0.9 Swenson eta!. (1983) 
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b( bmin - bmax [ ] a,t)= oc(t)-ocmin +bmax 
OCmax - ocmin 

(17) 

for the conditions oc(t) < ocmin• ocmin < oc(t) < OCmax• 
and oc(t) > ocmax• respectively, where it is understood 
that bmax• bmin, OCmax• and ocmin are functions of a and 
t, with 1 ~ a ~ 3 The difficulty in solving equations 
16 and 17 is that they appear circular--determination 
of the breeding rates requires the occupancy rate, but 
determination of the occupancy rate requires the 
breeding rates for the yearling and two-year-olds. 
The solution is to solve these equations 
simultaneously for the breeding rates and calculate 
the occupancy rate from that. The details of this 
solution are not shown here, but can be found in the 
computer code for module 'oc_ratef.m' (Runge 
1999). 

The relative reproductive rate (that is, the relative 
litter size as a function of age of the female) is 
modeled with a quadratic equation, 

r(a) = -k(a- agemax)2 + 1. (18) 

Technically, what I've been referring to as "breeding 
rate" above is not the breeding rate, but the fraction 
of females in that age class that have dispersed and 
established a colony by pairing with a male. Whether 
or not these females breed depends on the removal 
rate of males during the early harvest period. This 
removal rate is given by 

19 

_L,x(a, M ,t,4) 
a=2 
19 

_L,x(a,M,t,3) 
a=2 

The number of female kits born is given by 

x(O,F,t,!) = j(t)·(!-hM(t-1))· 

[x(2, F,t ,1) ·b(l,t -1) ·11 (t) 
4 

(19) 

+ L,x(a,F,t,l)·b(a-l,t-1)·r(a)·lA(t) 
a=3 
19 

+ L,x(a,F,t,l)·r(a)·lA(t)] (20) 
a=5 

and the number of male kits born is 

1-f(t) 
x(O,M,t,1)=x(O,F,t,l) . (21) 

f(t) 

11 

3.8 Summer nuisance control 

Natural summer mortality and summer nuisance 
control, though simultaneous in reality, are treated as 
separate processes in the population model (see 
"Biochronology," page 3), with nuisance control 
occurring first (see also "Summer mortality," page 
13). The transition from the post-panurition 
population (p = 1) to the post-weaning population (p 
= 2) is a result of the impact of nuisance control from 
the time of parturition to the beginning of the early 
harvest. In the northeast United States, this transition 
occurs between early June and late September. 
Unlike nuisance control during other times of the 
year, the removal of beavers is not unbiased across 
age classes. During the first two months of this time 
period (between parturition and weaning), the 
removal of a nursing mother can result in the indirect 
death of her kits due to starvation. Data required for 
this transition include: the number of non-kits 
removed by day during the first 60 days after 
parturition; the number of kits directly removed 
during the first 60 days after parturition; and the total 
number of beaver removed (kits and non-kits) from 
day 61 until the end of this transition. In addition, a 
neonate vulnerability curve is used to represent the 
fraction of kits that die due to the death of their 
mother as a function of the number of days since 
parturition. 

Removal of non-kits pre-weaning and all beaver 
post-weaning. The total number of non-kits taken 
prior to weaning are removed proportionally across 
all non-kit sex/age classes. Likewise, the total 
number of beavers taken after weaning are removed 
proportionally across all sex/age classes. 

Neonate vulnerability. During the 60 day period 
between parturition and weaning, the removal of a 
nursing female can result in the indirect death of her 
kits, with the fraction of kits that die decreasing from 
day 22 to day 60. The model includes a neonate 
vulnerability curve (Figure 5). For each nursing 
female removed on day d, the neonate vulnerability at 
day d multiplied by the average litter size determines 
the number of kits that are indirectly removed. The 
default neonate vulnerability curve postulates 50% 
mortality for kits orphaned at 40 days, and uses a 
slope parameter (0.3) that spreads the transition from 
95% mortality to 5% mortality between day 30 and 
day 50. The details of this curve are admittedly 
speculative and based mainly on analogy to deer 
(Woodson et al. 1980), as there are no studies of this 
vulnerability in beaver kits. 

Parameters and equations. The model requires 
the number of non-kits removed by nuisance control 
during the first 60 days after parturition by day d 
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Figure 5. Neonate vulnerability curve. Neonate vulnerability is the 
fraction of kits that die as a result of the death of their mother. The 
default curve shown is a logit transform with an inflection point at d = 
40 and a rate constant of 0.3 (see equation 24). 

(NJN(d, t)), the number of kits directly removed 
during the first 60 days after parturition (Nn<f.t)), and 
the total number of beaver removed after the first 60 
days past parturition (N11,(t)). The calculation is made 
of the fraction of the non-kit population that is 
females with a litter, 

4 

~)(a -l,t -1)x(a,F,t,1) 

(1-hM(t-1)) a=2 
19 

+ _Lx(a,F,t,l) 

g(t) = ------:-:19:-----!=------=-a=-=5------~ 

,L[x(a,F,t,1) + x(a, M,t,1)] (22) 
a=1 

The average litter size is given by 

x(O,F,t,1)+x(O,M,t,1) 3 lavg (t) = 19 · (2 ) 

g(t)~]x(a, F,t,1) + x(a, M ,t,l)] 
a=1 

The function nv( d) gives the neonate vulnerability for 
day d on a scale of 0 to 1, where 1 indicates that 
100% of the kits die if the mother dies. The default 
neonate vulnerability curve is sigmoidal, designated 
by a logit transform function: 

1 
nv(d)=l-l+e-0.3(d-40). (24) 

The number of kits that are indirectly removed on day 
d as a result of the removal of their mothers is given 
by 

N1N (d ,t) · g(t) ·lavg (t) · nv(d). (25) 

Thus, the total number of female kits so removed 
prior to weaning is 

!:u(O,F,t,2) = 

60 

L f (t) · N 1N (d ,t) · g(t) ·lavg (t) · nv(d) 
d=1 

and the total number of male kits removed is 

!:u(O,M,t,2) = 

(26) 

60 (27) 
,L(l- f(t))·N1N(d,t)·g(t)-lavg(t)·nv(d). 
d=1 

Some kits are also removed directly during this 
suckling period, and are merely subtracted from the 
kit population. 

During the 60-day lactation period, the total 
number of non-kits removed is subtracted 
proportionally from the non-kit population. The 
removal rate for the pre-weaning interval is 

60 

LN1N(d,t) 

() d=1 n1pre t =-,1..,..9 _ __:;_~------

_Lx(a,F,t,l) +x(a,M ,t,1) 
a=1 

(28) 

During the remainder of the transition from period 1 
to period 2, the total number of beavers removed is 



M.C. Runge, Beaver Population Model 

subtracted proportionally from the population. The 
removal rate for the post-weaning interval is 

NIP (t) 
n!post (t) = -M--1-9 _ _:..: ____ --= 

L,. L,.x(a,s,t,1) 
s=F a=O 

60 

-L. N 1N (d,t) 
d=l 

- N1K (t)- Lli(O, s,t,2) 

The number of female kits alive at period 2 is 

(29) 

x(O,F,t,2) = (1-n!post<t))· ,(30) 

[x(O, F,t,1)- Lli(O,F,t,2)- f(t) · N 1K(t)] 

the number of male kits alive at period 2 is 

x(O, M ,t ,2) = ( 1- n!post (t)) · 

[x(O, M ,t,l)- Lli(O, M ,t,2)- (1- f(t))· NIK (t)] 
,(31) 

and for all s and 1 :::; a :::; 19, the number of beaver 
alive at period 2 is 

x(a,s,t ,2) = (1- n!post (t)) · ( 1- n!pre(t)) · x(a,s,t ,1) .(32) 

3.9 Summer mortality 

The transition from the post-weaning (p = 2) to the 
pre-harvest population (p = 3) is a result of the 
impacts of summer mortality, which includes 
mortality due to dispersal. In the northeast United 
States, this transition occurs from early June to early 
October. The model requires minimum (low-density) 
mortality rates for male and female kits, yearlings, 
two-year-olds, three-year-olds, and adults; maximum 
(high-density) mortality rates for two- and three-year
aids; and a function that relates dispersal mortality to 
pre-dispersal occupation rate for two- and three-year
aids. The vulnerability curve used for relative adult 
mortality rates is the same as that used in the winter 
mortality calculations (see "Winter mortality," page 
7). 

Density-dependence of dispersal mortality. 
Beaver typically disperse from their natal colony in 
their third or fourth summer (as two- or three-year 
olds). If the colony density is low and they are able 
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to find a suitable site (and mate) to establish a colony, 
they become part of the breeding population. If the 
colony density is high they are more likely to die 
from starvation, predation, or accident as they search 
for a site. To compensate for this, when the colony 
density is high, beaver (especially two-year-olds) may 
delay dispersal for another year. We might expect the 
summer mortality of dispersers to look like Figure 6. 
At very high occupancy rates, about half of the two
year-olds disperse (Brooks et al. 1980), are unable to 
find sites, and eventually die (thus, a maximum 
mortality of around 0.5). At these same high 
densities, any three-year-olds alive will still be in the 
natal colony, will all disperse, and most (0.85) will 
die (see Molini et al. 1981). The range over which 
the density-dependence of dispersal mortality acts (a 
to b in Figure 6) is not estimated in the literature. 
The default values used herein are based on the 
intuitive arguments that the occupancy rate has to be 
fairly high (certainly above 0.5) before this density
dependence is evident, and that the change from 
minimum to maximum mortality should not be 
abrupt. 

Parameters and equations. Default values are 
shown in Table 3 for the mortality rates for male and 
female kits, ms(O, M, t) and ms(O, F, t), yearlings, 
ms(1, M, t) and ms(1, F, t), and adults, msAM(t) and 
msAF(t). The minimum and maximum summer 
mortality rates for two-year-olds are given by msmin(2, 
s, t) and msmax(2, s, t), and are defined analogously 
for three-year-olds. Vulnerability curves for male and 
female adults are specified by equation 10. 

Table 3. Default summer mortality rates. For two
and three-year-olds, the minimum and maximum 
mortality rates are shown. The default values for kits 
are based on Gunson (1970) and those for yearlings 
are based on Svendsen (1980). The minimum two
year-old mortality is loosely based on Boyce (1981) 
and Gunson (1970) and reflects the observations that 
males face slightly greater risks during this period 
(Leege 1968, Novak 1987a). The adult and minimum 
three-year-old mortality rates are set at a value that is 
about in the middle of the wide range of estimates for 
these rates (Payne 1984a, Boyce 1981, Hodgdon 
1978, Molini et al. 1981). See text for justification of 
the maximum mortality rates for two- and three-year
aids. The default values for adisp and bdisp are 0.65 
and 0.9, res ectivel . 

1 
Male 0.027 0.016 

Female 0.027 0.016 

2 
0.095 
-0.50 
0.075 
-0.50 

3 
0.03-
0.85 

0.03-
0.85 

Adult 
0.03 

0.03 
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Figure 6. Summer mortality for two- and three-year-olds as a function 
of occupancy rate. At higher population densities, there are fewer 
available colony sites and dispersing beaver may succumb to various 
sources of mortality before finding a site. 

The pre-dispersal occupancy rate (as opposed to 
the occupancy rate at the time of the aerial survey, 
which is past-dispersal) depends on the potential 
breeding rates for the previous reproductive season, 
which in turn, depend on the post-dispersal 
occupancy rate in the previous fall. Thus, 

3 19 

~)(a -l,t -l)x(a, F,t,2) + L,x(a,F ,t,2) 

OCPre (t) = a-2 a=4 

K(t) 

(33) 

describes the pre-dispersal occupancy rate. The 
summer mortality rates for two- and three-year-olds 
are given by 

ms(a,s,t) = 

msmin (a,s,t) 

msmax (a,s,t)- msmin (a,s,t) [ ] 
--==:c:....:...----'---=-'---'- OCPre (t)- adisp 

bdisp - adisp 

+ msmin (a, s,t) 

msmax (a,s,t) 

(34) 

depending on whether acPre(t) < adisp• adisp :5: ocp,.,(t) :5: 
bctisp• or ocpre(t) > bctisp• respectively. The period 3 
population is calculated with 

x(a,s,t ,3) = x(a,s,t ,2) · (1- ms(a, s,t)), (35) 

for all sand for a:::;; 3, and with 

x(a,s,t,3) = x(a,s,t,2)·(1-msAs(t)·vs(a)) (36) 

for all sand for a > 3, subject to the constraint that 

(37) 

3.10 Environmental stochasticity 

The model described thus far is strictly deterministic, 
with all parameters that are a function of t being 
interpreted as constants which might change from 
year to year, but only as specified by the user. A 
deterministic approach is useful for making point 
predictions of the population size and for exploring 
dynamics that arise out of the deterministic structure 
of the model, such as the sensitivity of the growth rate 
to changes in the parameters. A stochastic approach 
is required, however, when prediction intervals are 
needed, when the level of uncertainty about 
population growth needs to be assessed, and when it 
is desirable to simulate population growth under 
fluctuating environmental conditions. To incorporate 
environmental stochasticity, some of the parameters 
would have to be represented as random variables. 
To simulate environmental stochasticity in winter 
mortality, for instance, the ten winter mortality rates, 
(mw(a, s, t) for a:::;; 3 and mwA,(t)), could be treated as 
a random vector, with a specified mean, variance-
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covariance structure, and JOtnt probability 
distribution. A similar procedure could be used with 
the summer mortality. To simulate environmental 
stochasticity in reproduction, the litter sizes for adults 
and yearlings that breed could be treated as random 
variables with specified probability distributions. 

3.11 Aspects not included 

Models representing natural populations cannot be 
complete and totally realistic. Often population 
models cannot even approach such a goal without 
being unwieldy and intractable. Tradeoffs between 
realism, precision, and generality are unavoidable in 
any modeling context (Levins 1966). It is important 
that a modeler be aware of what has been left out. 
The four most important aspects left out of the beaver 
population model described above are demographic 
stochasticity, late-winter starvation, colony structure, 
and other relationships between the variables. 

When populations are large, the effects of 
demographic stochasticity are small. Since the 
beaver population model is designed to be used at the 
management unit level, where the population is high 
enough that a harvest is justified, the absence of 
demographic stochasticity is probably warranted. 
However, because there are so many sex/age classes, 
even with a large population some of the sex/age 
classes may have very few individuals in them, and so 
the effects of demographic stochasticity may be 
important in those classes. On the other hand, since 
the sex/age classes which will have the smallest 
numbers will be the older adults, for whom mortality 
is relatively high and reproductive rates are low, this 
effect may be negligible. 

An additional source of mortality for beavers is 
late-winter starvation. This can occur when the 
under-ice period is long and the food cache becomes 
exhausted before the ice breaks. Modeling this 
mortality can be approached from a bioenergetics 
viewpoint (Moen 1973), focusing on the typical cache 
and how long it could be expected to last for a colony 
of a particular composition. There is a mechanism 
for compensatory harvest mortality here-trapping 
will reduce the number in the colony, freeing up food 
resources for the remaining members. Thus, 
mortality due to trapping may be at least partially 
compensated by reduction in the potential for late
winter starvation. The timing of the trapping 
certainly plays a role, as the earlier a beaver is 
removed, the more food resources are left for the rest 
of the colony. The timing of removal is most 
important at more northern latitudes, where the under
ice period is long and continuous. In the middle and 
southern portions of their range, beaver are not 
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typically confined under-ice for the entire winter, and 
have an opportunity to forage during intermittent 
breakups. This may be an important addition to the 
model for populations in colder climates. 

Since females can pheromonally repress 
reproduction in younger females in the same family 
unit, careful consideration should be given to colony 
structure in a beaver population model. I have 
included the effect of colony structure on 
reproduction, through the indirect method of having 
reproductive rates depend on occupancy rate, but a 
full-fledged treatment of this dynamic would need to 
track individuals with regard to their "colony status." 
The problem is that modeling colony structure (not 
just number of colonies) along with sex/age structure 
increases model complexity considerably-for a 
given sex/age distribution, there may be many 
different colony structures possible. For such a 
model to be meaningful, the manager would have to 
collect data on aspects of colony structure-for 
instance, each beaver harvested would have to be 
associated with a particular colony and would also 
need to be sexed and aged. Since such detailed data 
are both expensive and hard to come by (and thus are 
unlikely to be gathered), a model that included such 
colony structure would appear to be very realistic, but 
that level of detail would not be justified, as there 
would be no feedback to adjust the model's 
predictions in regard to colony structure. 

Finally, this model does not include a number of 
other relationships among the variables. For instance, 
the sex ratio of the kits is not tied to any other 
variable, like the occupancy rate or the age of the 
mother. In some species, for example, white-tailed 
deer (Moen et a!. 1986), such relationships are 
important. Another factor that has been discussed in 
regard to beaver population dynamics is the 
epidemiology of wide-spread disease, especially 
tularemia (Stenlund 1953, Lawrence et a!. 1956), 
which may be density-dependent. It is my belief that 
I have not, however, left out any relationship that is 
critical to a population model of beaver. 

4 Dynamics of this Population Model 

In this section, I explore population dynamics with 
the beaver model, looking for properties that arise at 
the population level from the synthesis of more basic 
processes. For dynamics for which field observations 
are available, agreement or discrepancy between 
model dynamics and known dynamics can support or 
undermine confidence in the model structure. For 
dynamics for which field observations are not 
available, the model can be used to generate field
testable hypotheses. 
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4.1 Methods 

Two major methods were used to investigate the 
dynamics of this model, one that looked at the long
term equilibrium properties, and one that looked at 
"instantaneous equilibrium" properties. In the first 
method (long-term equilibrium), an initialized 
population was allowed to increase or decrease over 
time, under a certain set of conditions, until the 
population size and structure reached stable levels. 
Both the trajectory over time and the final 
equilibrium state were of interest. In the second 
method (instantaneous equilibrium), an initialized 
population was allowed to grow for one year under a 
certain set of conditions, then the final sex/age 
distribution was applied to the initial population size, 
and the process was repeated 50 to 150 times until a 
stable structure was obtained for that particular 
starting population size. Unless noted otherwise, 
default values were used for all parameters, the 
carrying capacity of the environment was 500 
colonies, and there was no removal of animals by 
nuisance control. Four specific experiments were 
conducted. 

In the first experiment ("growth of a 
nonexploited population over time"), the long-term 
equilibrium method was applied to an initial 
population of size 10. This initial population had a 
stable sex and age structure, produced by applying 
the more detailed initialization procedure (which is 
equivalent to the instantaneous equilibrium method). 
Note that fractions of an animal were possible in any 
particular sex/age class. The population model was 
used to simulate the growth of the initial population 
over a period of 50 years, in the absence of harvest or 
nuisance control. The total population size and 
structure were recorded for each point in time. 

In the second experiment ("growth rates, 
occupancy rates, and average colony size"), the 
instantaneous equilibrium method was applied to 
initial population sizes from 100 to 4500 in 
increments of 200, in the absence of harvest or 
nuisance control. From the stable population 
structure produced by this method, the growth rate 
and the fall and summer occupancy rates were 
calculated. The growth rate was the fractional 
increase in the population size after one year, that is, 

(38) 

where nr is the total population size at time t. The fall 
and summer occupancy rates were calculated using 
equations 16 and 33. The average colony size was 
calculated by dividing the pre-harvest population size 
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by the product of the fall occupancy rate and the 
colony carrying capacity, 

LLx(a,s,t,3) 

Average colony size s a (39) 
oc(t) · K(t) 

In the third experiment ("effect of harvest on 
growth rate"), the instantaneous equilibrium method 
was applied in the same way as in the second 
experiment, only this time harvest was included. 
Early or late harvest rates of 0 to 0.4, in increments of 
0.1, were applied to populations of size 100 to 4500, 
in increments of 200. Growth and occupancy rates 
were calculated as above. In addition, an adjusted 
growth rate was also calculated to measure the growth 
of the population after accounting for the effect of 
harvest. This adjusted growth rate was calculated as 

(40) 

where h is the harvest rate in relation to the pre
harvest (p = 3) population size. 

In the fourth experiment ("effect of harvest on 
stable population size and structure"), the long-term 
equilibrium method was applied to an initialized 
population that was experiencing a constant harvest 
rate. Large initial population sizes were chosen so 
that the population started out at full occupancy, and 
the model was run until the population reached a 
stable size and structure. The early and late harvest 
rates used were 0, 0.05, 0.10, 0.15, and 0.20 to 0.34 
in steps of 0.01 (note that a harvest level of 0 
corresponds to the first experiment). The final stable 
size, occupancy rate, and average colony size were 
recorded. 

4.2 Results and discussion 

The results of these four experiments, discussed in 
detail below, suggest that the model structure is 
realistic, since the dynamics of the model 
qualitatively match observed dynamics. There is, 
however, a suggestion that the default parameter 
estimates produce a growth rate that is too high. 
Several interesting dynamics involving average 
colony size and the effect of harvest have not been 
studied in the field, and provide testable hypotheses 
for future studies. 

Growth of a nonexploited population over time. 
The model exhibits density-dependent growth of the 
total population size, with fast growth at low 
population size being reduced to zero growth at high 
population size (Figure 7). It takes about 25 years for 
the simulated population to reach a stable population 
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Figure 7. Growth of a nonexploited beaver population over time. An 
initial population size of ten, with a stable age-structure, was used. The 
number of potential colony sites in the area being modeled was set at 
500. 

size, that is, to "saturate" the potential habitat. Lancia 
and Bishir (1985) show data from a nonexploited 
population in Massachusetts that grew from 3 
individuals in 1952 to around 300 in 1975, at which 
point it seemed to have reached a stable level. That 
is, the observed population took 23 years to increase 
by two orders of magnitude. The simulated 
population took about 12 years to increase by two 
orders of magnitude (from 10 to 1000). Thus, the 
population growth was qualitatively like that seen in 
the field, but the intrinsic growth rate in the model 
may be too high, at least in comparison to the beaver 
population in this area of Massachusetts. 

Notable changes in the age structure of the 
simulated population occurred over time (Figure 8). 
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The kit and three-year-old fractions declined, while 
all other age classes increased in relative abundance. 
The decrease in the kit fraction is due to the density
dependent reduction in reproductive rates of younger 
females. The decrease in the three-year-old fraction 
is due to density-dependent dispersal mortality. The 
fractions seen in the simulated population match 
those reported in the literature fairly well. The kit 
and yearling fractions at saturation are on the high 
end of observed values (Hill 1982, Novak 1987a), 
suggesting that the reproductive rates are higher in 
the model than are typical in nature. Density
dependent effects produced some sharp jumps in the 
age-structure trajectories, a property that is typical of 
natural populations in which reproduction occurs only 
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Figure 8. Age-structure of a simulated beaver population over time. The fraction of the population in several age 
classes is shown relative to time and total population size. 
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Figure 9. Growth rate as a function of population size for an 
unharvested population. 

once per year. 
Growth rates, occupancy rates, and average 

colony size. The instantaneous growth rate as a 
function of population size is shown in Figure 9. The 
relationship between growth rate and population size 
is not linear across the full range of population sizes 
(as would be expected under a simple logistic model). 
Rather, there appears to be an abrupt change in slope 
near a population size of 2300. This corresponds to 
pre-dispersal and post-dispersal occupancy rates of 
0.65 and 0.72, respectively, which is where the 
density-dependent effect of dispersal mortality 
begins. When the growth rate is plotted against the 
occupancy rate it can be seen more clearly that the 
sharp change in slope corresponds to the lower 
threshold of density-dependence in dispersal 
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mortality (Figure lOa). The intrinsic rate of increase, 
as measured by the y-intercept of the curve in Figure 
9, is near 0.55, higher than that estimated by Lancia 
and Bishir (1985), who argued that a range of 0.35 to 
0.45 was reasonable. This discrepancy, and the high 
kit fraction in Figure 8, could indicate that the base 
adult litter size (/A) is too large. I would not expect 
the qualitative dynamics of this model to be changed, 
however, by adjustment of this parameter. 

Occupancy rate increases with increasing 
population size, though not in a linear fashion-the 
slope of the relationship is greater for lower 
population sizes than it is for higher ones (Figure 
lOb). Thus, a post-dispersal occupancy rate of 0.5 
corresponds to a population size of about 1500, while 
an occupancy rate of 1 corresponds to a population 
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Figure 10. Growth rate, occupancy rate, and population size. (a) In the first graph, the growth rate is plotted 
against the fall occupancy rate. The change in slope occurs at a fall occupancy rate of 0.72, which corresponds to a 
summer occupancy rate of 0.65. (b) In the second graph, the pre-dispersal (summer) and post-dispersal (fall) 
occupancy rates are plotted against population size. 
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size of near 5000. Note that the pre-dispersal 
(summer) occupancy rate is always lower than the 
post-dispersal (fall) occupancy rate, and never 
reaches 1. This makes sense-prior to dispersal, 
there are a number of available colony sites, vacated 
as a result of mortality over the previous year. At 
saturation, the occupancy rate post-dispersal, 
however, should be 1, as the open sites are filled by 
dispersing beaver. 

If the occupancy rate and the population size do 
not change in a linear fashion, then the average 
colony size must not be constant across all conditions 
(Figure ·11). In fact, the average colony size increases 
steadily with increasing occupancy, reflecting the 
observation that beaver delay dispersal at higher 
population densities. The graph of colony size 
against occupancy shows distinct linear segments, 
which correspond to the occupancy ranges in which 
different dynamics are acting. (In the discussion to 
follow, occupancy rate refers to the fall occupancy 
rate unless otherwise noted, and is designated as oc.) 
Below oc = 0.1, the maximum fraction of yearlings, 
two-, and three-year-olds breed. Between oc = 0.1 
and 0.4, the breeding of yearlings is reduced to zero. 
The colony size increases for two reasons: yearlings 
are staying in the natal colonies rather than 
dispersing, and the average litter size is higher for 
non-yearling breeders. At oc = 0.4, the breeding of 
two-year-olds begins to decline, and at oc = 0.5, the 
breeding of three-year-olds begins to decline. Both 
breeding rates are reduced to a minimum at oc = 0.9. 
The two-year-old effect is to increase colony size for 
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the same reason as for yearlings. In and of itself, the 
three-year-old effect should be to decrease colony 
size, since three-year-olds are considered to have all 
dispersed by the breeding season, and thus, reduction 
of their breeding rate means there are an increased 
number of pair and single colonies. Note that this 
effect is seen as a smaller slope in the range oc = 0.5 
to 0.72, than in the range 0.4 to 0.5. Finally, at oc = 
0.72 (corresponding to summer occupancy of 0.65), 
the average colony size begins to increase markedly, 
because the two-year-olds are delaying dispersal, and 
the two- and three-year-aids that do disperse are 
facing heavy mortality. Thus, most colonies consist 
of breeding adults with their kits, yearlings, and 
undispersed two-year-olds. 

These occupancy rate dynamics in the population 
model suggest a discrepancy, a field experiment, and 
a caution to managers. First, the graph of average 
colony size (Figure 11) reveals a problem with the 
model structure-the transitions between different 
density-dependent dynamics are more abrupt than 
should be expected in a natural population. I've 
represented density-dependent effects on breeding 
and dispersal as simple linear relationships, when 
they are probably much more complicated. Second, 
this same graph suggests a field-testable hypothesis
colony sizes will increase with increasing occupancy. 
While the range of average colony sizes produced by 
the model closely matches that reported in the 
literature (Novak 1987a), I know of no study that has 
specifically looked at the relationship betwee~ colony 
size and occupancy rate. Such a study could be done 
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Figure 11. Average colony size as a function of fall occupancy rate. The dashed reference lines are at fall 
occupancy rates of 0.1, 0.4, 0.5, and 0.9. The dotted reference line is at a fall occupancy rate of 0.72, which 
corresponds to a summer occupancy rate of 0.65. 
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through manipulation of occupancy rates in a number 
of districts, or through meta-analysis of state, 
provincial, and private data. Third, an important 
caution to managers-it is dangerous to assume that 
colony size is constant. In fact, there is strong reason 
to believe that average colony size can change 
considerably, undermining how a manager combines 
aerial survey estimates of colony density with harvest 
rates when making population projections. 

Effects of harvest. The effect of harvest on 
population dynamics, especially the short- and long
term growth rates, are of crucial importance to the 
endeavor to manage beaver. The results of the third 
and fourth experiments follow. 

On growth rate. The gross growth rate expected 
for a population depends both on the population 
density and on the harvest rate (Figure 12). Several 
aspects of this relationship are of interest. First, 
increasing the early harvest rate by 0.1 decreases the 
growth rate by more than 0.1, because early harvest 
of males reduces the pregnancy rate (see below for 
discussion of early versus late harvest). Second, 
harvest rates of 10-20% are not enough to stop the 
growth of a beaver population (unless the population 
is at full occupancy, in which case its growth is 
stopped naturally). Third, the range of harvest rates 
relevant for management is fairly narrow, say, 
between 25% and 35%-this is where growth rates 
are zero over the range of desirable occupancy levels. 

To make a more direct comparison of different 
harvest levels, consider the adjusted growth rate as a 
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function of population size (Figure 13). The adjusted 
growth rate relationship for a harvested population is 
similar to that of an unharvested population, with 
several notable differences. At low density, the 
adjusted growth rates under early and late harvest 
scenarios are lower than with no harvest, but for 
different reasons. In the case of early harvest, 
removal of males reduces the pregnancy rate of the 
remaining females, hence, there is less reproduction. 
In the case of late harvest, the winter mortality is a 
greater fraction of the adjusted population size, n1 (1 
-h), since it occurs prior to the harvest. The relative 
impact of these two dynamics changes over the full 
range of population density. At high densities, the 
adjusted growth rate under a harvest scenario is 
higher than with no harvest, because of a 
compensatory interaction between harvest mortality 
and dispersal mortality. At high density, harvest 
opens up colony sites, reduces the pre-dispersal 
density, and allows dispersers to find sites. 

On stable population size and structure. The 
stable population size produced by harvesting at a 
constant rate over time decreases steadily with 
increasing harvest rate, and is zero for an early 
harvest rate of 0.32 or a late harvest rate of 0.34 
(Figure 14). Note this is a fixed rate, not a fixed total 
harvest. Thus, an early harvest rate of 32% or above 
is not sustainable. The average colony size in an 
equilibrium population also decreases steadily with 
increasing harvest rate. 
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Figure 12. Finite growth rate as a function of fall occupancy, for a range of harvest rates. The harvest rates shown 
are expressed as a fraction of the pre-harvest population (p = 3). This graph shows the results for the case where 
there is early harvest only. The results for late harvest are qualitatively similar. 
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Figure 13. Adjusted growth rate (equation 40) as a function of population size. The solid line is for a harvest rate 
of 0, the dashed line is for an early harvest rate of 0.3, and the dotted line is for a late harvest rate of 0.3, where the 
harvest rate is always measured relative to the pre-harvest population size. 

The most interesting result is the effect of harvest 
rate on the stable occupancy rate (Figure 15). For 
sustained harvest rates below 20%, there is no 
reduction in the occupancy rate. The removal of 
beavers creates space for dispersers. Since the 
dispersers initially have smaller colonies, the average 
colony size and the total population size are smaller, 
but the potential sites remained filled. As the harvest 
rate rises above 21-23%, the summer occupancy rate 
drops below the dispersal mortality threshold (0.65) 
and the compensatory effect is removed. Increases in 
harvest above this rate result in a sharp decrease in 
the stable occupancy rate. This decrease begins at a 
lower rate for late harvest, because of the interaction 
with winter mortality noted above, but is steeper for 
early harvest, because of the effect on pregnancy rate. 
In either case, the range of sustained harvest rates 
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desirable for management is quite narrow. This 
means that in the range of occupancy rates typically 
sought through management, the population size and 
occupancy rate are quite sensitive to harvest. Thus, 
harvest management can be an effective tool. 

5 Parameter Estimation and Sensitivity 
Analysis 

In this section I analyze the sensitiVIty of the 
population growth rate to changes in the model 
parameters over ranges that capture what has been 
reported in the literature. Such a sensitivity analysis 
is one of the most useful applications for a detailed 
population model because it helps prioritize research 
objectives by identifying those parameters that are 
most important to estimate precisely. In the 
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Figure 14. Stable population size and colony size as a function of harvest rate. Results using early harvest only 
are shown with a solid line, late harvest only with a dashed line. 
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Figure 15. Stable fall occupancy rate as a function of harvest rate. The decline with early harvest spans rates of 
0.23 to 0.32. The decline with late harvest spans rates of 0.21 to 0.34. 

preceding model development and analysis, I have 
used the literature on beaver life history to suggest 
reasonable values for the parameters, but many of the 
parameters have never been measured directly or 
cannot even be measured properly. Most of the 
parameters that have been measured show large 
variations between studies. The sensitivity analysis 
will show, however, that most of the model 
parameters do not need to be specified with great 
precision, as they have only minor effects on the 
population dynamics. A manager's top priority in 
regard to understanding a beaver population should 
be in estimating those parameters that are identified 
as having a very strong effect on population 
dynamics. 

The approach taken was to choose combinations 
of the parameters from independent uniform 
distributions and calculate the stable growth rate 
associated with each combination (Wisdom and Mills 
1997). Because there are strong density-dependent 
effects, this process was repeated at three different 
densities. Then, the importance of the parameters in 
affecting the growth rate was ranked using several 
regression techniques (Wisdom and Mills 1997). 
This method differs from an elasticity analysis in that 
the ranking depends both on the elasticity of the 
parameter and on the range of possible values (or 
variance) for that parameter. Thus, for instance, a 
parameter with a high elasticity but no uncertainty in 
its estimate would not appear as significant. 

5.1 Methods 

Forty-seven of the parameters described above were 
chosen for investigation (Table 4) and the remaining 
ones were fixed at the default values. Two were fixed 
because the model is overspecified (c1(F) and c1(M)), 
two were fixed because the evidence clearly supports 
the default values (bmin(l) and bmin(2)), and the 
remaining ones were not relevant to the sensitivity 
analysis (the kit and harvest vulnerability 
parameters), since the harvest and nuisance control 
rates were set at zero. For the parameters 
investigated, a plausible range was specified based on 
values reported in the literature (Table 4). Random 
combinations of these 47 parameters were chosen by 
drawing each independently from a continuous 
uniform distribution with the range specified. 

For each replicate, a random combination of 
parameters was generated, and the stable growth rate 
was calculated by a method analogous to the power 
method used in matrix model analysis (Caswell 
1989). To do this, the population model was 
repeatedly run for one time step (year) with the 
specified parameter combination, each time 
readjusting the starting sex/age structure, until the 
stable structure was found for that parameter 
combination. The growth rate was then expressed as 
an exponential growth rate, i.e., as ln(N1+1/N1). This 
entire process was repeated 2500 times at each of 
three population densities (100, 800, and 3500 
individuals in a region with K = 500 colony sites). 

At each density, two methods were used to 
identify and rank parameters that had a significant 
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Table 4. Sensitivity analysis parameters. For the sensitivity analysis, each parameter was chosen independently 
from a uniform distribution with the range shown. The exponential growth rate, ln(N1+1/N1), was calculated for 
each of 2500 replicates. The last 3 columns show the coefficients of determination for the simple linear 
regressions of growth rate on each parameter. Only the ten (six for N1 = 3500) parameters with the highest R2 

values are shown. The sign (+ or -) indicates whether there was a positive or negative correlation between 
growth rate and that particular parameter. Any parameter for which a sign is not shown was not significantly 
correlated with growth rate. At the bottom of the table, the R2 values are shown for the multiple regressions of 
growth on all47 parameters. C The c2 vulnerability values are shown on the In-scale.) 

Parameter Range Individual R2 

Winter Mortality 
mw(O, F) 
mw(O, M) 
mw(1, F) 
mw(1, M) 
mw(2, F) 
mw(2, M) 
mw(3, F) 
mw(3,M) 
mwAF 
mwAM 

Summer Mortality 
ms(O, F) 
ms(O, M) 
ms(l, F) 
ms(1, M) 
msmin(2, F) 
msmio(2, M) 
msmi0 (3, F) 
msmi0 (3, M) 
msAF 
msAM 

Vulnerability 
c1(F) 

kl(F) 
Cz(F) 
kz(F) 
CJ(M) 

k1(M) 
c2(M) 
k2(M) 

Reproduction 
LA 
11 
f 
k 
agemax 

(0.015, 0.25) 

(0, 0.1) 

{0, 0.2) 

(0, 0.054) 

(0, 0.032) 

(0.01, 0.14) 
(0.03, 0.16) 

{0, 0.05) 

fixed 
( -0.08, 0.18) 

(-20.9, -13.5) t 
(0.5, 1.5) 

fiXed 
(-0.08, 0.18) 

(-20.9, -13.5) t 
(0.5, 1.5) 

(3.0, 6.0) 
(2.1, 3.3) 

(0.46, 0.54) 
(-0.010, -0.002) 

(6, 11) 

impact on growth rate. First, those parameters that 
were significantly correlated with growth rate were 
ranked by the magnitude of that correlation (this is 
equivalent to ranking by the R2 values of the 
regressions of growth rate on each parameter 

Nt = 100 Nt = 800 Nt = 3500 

13.4% (-) 

2.3% (-) 

4.6%(-) 

(-) 

4.6% (-) 

(-) 

(-) 

2.1% (-) 

(-) 

43.5% (+) 
(+) 

3.9% (+) 
4.5% (+) 
6.6% (-) 

7.5% (-) 

1.5 % (-) 

4.8% (-) 

2.0% (-) 

5.9% (-) 
(+) 

(-) 

(-) 

(-) 

(-) 

(-) 

(-) 

(+) 

51.9% (+) 

2.1% (+) 
4.7% (+) 
8.0% (-) 

(-) 
1.4% (-) 

(-) 

(-) 

(-) 
(-) 

(-) 

(-) 

60.2% (+) 

1.6% (+) 
(-) 

individually). Second, stepwise regression of growth 
rate on all the parameters was performed, and ranks 
were assigned based on the order in which parameters 
were added to the regression model (the F-value to 
add a variable to or remove one from the model was 
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Table 4 (Continued). Sensitivit~ anal~sis £arameters. 
Individual Ri Parameter Range 

Breeding Rates 
bmax(l) (0.25, 0.65) 
bmin(l) fixed 
OCmin(l) (0, 0.2) 
OCmax(l) (0.2, 0.6) 
bmax(2) (0.7, 1.0) 
bmin(2) fixed 
0Cmin(2) (0.2, 0.6) 
0Cmax(2) (0.8, 1.0) 
bmax(3) (0.7, 1.0) 
bmin(3) (0.1, 0.4) 
0Cmin(3) (0.3, 0.7) 
0Cmax(3) (0.8, 1.0) 

Kit Vulnerability 
(slope) fixed 
(midpoint) fixed 

Dispersal Mortality 
msmax(2, F) (0.3, 0.7) 
msmax(2, M) 
msmax(3, F) (0.75, 0.95) 
msmax(3, M) 
Gctisp (0.5, 0.8) 
bctisp (0.8, 1.0) 

Total 47 + 6 fixed 

4.0). A composite ranking was obtained by sorting 
the parameters according to the sum of the two 
rankings described above, retaining only those 
parameters that were significant with regard to both 
criteria. 

5.2 Results 

At all population densities, the adult litter size (/A) 
was the most important determinant of growth rate, 
no matter what ranking method was used (Tables 4 
and 5). Variation in this parameter explained 
between 43% and 60% of the variation in the growth 
rate. No other single parameter came anywhere near 
explaining this level of variation. Other parameters 
that were significant across all densities included two 
reproductive parameters, agemax and k, and three 
female mortalities, mwAF, mw(O, F), and ms(O, F). 

At low and medium population densities, the 
remaining parameters sorted out in a fairly similar 
manner, with female mortality rates and several 
reproductive parameters having the strongest effects 
on growth rates (Table 5). The litter size of females 

N=lOO N=800 N=3500 

5.0% (+) (+) 

(+) 
3.1% (+) 

(+) (+) 

(+) (+) 
(+) 

1.4% (-) 

(-) 
2.1% (+) 
3.7% (+) 

97.3% 97.2% 75.1% 

bred as yearlings (/1) was only important at the lowest 
density. The occupancy rate at which yearling 
breeding ceases (ocmax(l)) was only important at 
medium density. 

At high density, a very different set of parameters 
was important, specifically the dispersal mortality 
related parameters. In addition, several male 
mortality rates were shown to be important predictors 
of growth rate (Table 5). At low and medium 
densities, it appears that there are few significant 
interactions between parameters, as evidenced by the 
fact that the 47 parameters, as main effects, explain 
97% of the variation in growth rate (Table 4). This 
leaves a scant 3% to be explained by the myriad 
interaction terms or by non-linear relationships. This 
situation is different at high density, however, with 
only 75% of the variation in growth rate explained by 
these main effect terms. The remainder may be 
explained by interaction terms and by non-linear 
relationships. 

The effect of litter size on growth rate, for the 
low and high population densities, is shown in Figure 
16. The graphs indicate that the relationship between 
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Table 5. Summary of rankings of significant variables. The "Low-", "Medium-", and "High-density" columns 
show the composite rankings of the variables from those three sets of simulations. In each section, the 
parameters are ranked according to the sum of the ranks across the three densities. Blanks in the table indicate 
that the parameter did not have a significant effect on growth rate at that density. 

Description Low Medium High 
LA Adult litter size 1 1 1 
agemax Relative litter size parameter 3 2 10 
mwAF Winter mortality, adult female 5 4 7 
k Relative litter size parameter 7 6 3.5 
mw(O, F) Winter mortality, kit female 2 3 13.5 
-~~(9~ f) _______ S_u~~r_l!l~~t~lity~ ~i! !~Jl!~l~ _____________ _1~- _______ !~·? ________ !~ ___ _ 
mw(2, F) Winter mortality, 2-year female 6 5 
f Female fraction at birth 8 8 

mw(1, F) 
mw(3, F) 
msmin(2, F) 
bmax(2) 

Maximum fraction of yearlings that 
breed 

Winter mortality, yearling female 
Winter mortality, 3-year female 
Summer mortality, 2-year female 
Maximum fraction of 2-year-olds that 

breed 
Maximum fraction of 3-year-olds that 

breed 

4 

9.5 
11 
9.5 
12 

15 

13 

10 
9 

11.5 
11.5 

12 

_~~A£ _________ S_u~~r_l!l~~t~lity ~ ~c!_u}~ te~al~ ___________ ! ~-~ ________ 1_5 ______________ _ 
_t1 __________ _l:.i~t~r- s_i~~ <2tJ.:e_a~li~g_ ~r~~c.!t?.T~ ____________ _l} ________________________ _ 
acmaxC1) Occupancy rate at which yearling 7 

breeding reaches minimum 
k1(F) Female vulnerability parameter 14 
msmin(3, F) Summer mortality, 3-year female 18.5 
acminO) Occupancy rate at which yearling 18.5 

_______________ ~~e~~~ng_b_eg~n_s _t<2 9~c:Ii~e- ______________________________________ _ 
bdisp Upper occupancy threshold for dispersal 2 

adisp 
mw(O, M) 
msmax(2, M) 

mwAM 
msAM 
bmin(3) 

msmax(3, M) 
mw(1, M) 
mw(2, M) 

mortality effect 
Lower threshold for same 
Winter mortality, kit male 
Maximum dispersal mortality, 2-year 

male 
Winter mortality, adult male 
Summer mortality, adult male 
Minimum fraction of 3-year-olds that 

breed 
Max. disp. mortality, 3-year male 
Winter mortality, yearling male 
Winter mortality,.2-year male 

growth rate and litter size appears to be primarily 
linear. Tests of the quadratic effect of litter size are 
significant at all densities, but the amount of variation 
explained is two orders of magnitude smaller than the 
linear term. 

5.3 Discussion 

3.5 
5 
6 

8.5 
8.5 
11 

12 
13.5 
15 

The most important uncertainty in the population 
model is the average litter size for adult females of 
the most fecund age class (LA). This parameter, in 
conjunction with the relative reproductive rate 
equation (18), determines the litter size for all adult 
females. It is most important for two reasons: the 
growth rate is very sensitive to changes in this 
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Figure 16. Growth rate as a function of adult litter size (lA) at low and high population density. For the sake of 
clarity, only a random sample of 100 points (from the 2500 for each analysis) is plotted. The solid line is the simple 
linear regression fit to the entire data set. The dashed lines are 95% prediction bands, calculated without a multiple 
comparisons correction. Confidence bands are not shown because they are virtually indistinguishable from the fitted 
line on the scale of these graphs. 

parameter; and there is considerable variability in this 
parameter, as measured by a large number of studies 
over the past half-century. The variability is most 
commonly attributed to habitat quality, with elevation 
and latitude also on the list of possible factors (Novak 
1987a). Thus, for practical application of this (or any 
similar) beaver population model to a specific region, 
estimation of average litter size should be the highest 
priority, no matter what the density of the population. 

Two reproductive parameters closely related to 
lA, namely, k and agemax, should also be top 
priorities for estimation. The parameters control the 
relationship between average litter size and maternal 
age, and thus, through interaction with the age
distribution of females, can strongly affect the 
population growth rate across all densities. 
Estimation of these three parameters requires a study 
of litter size as a function of maternal age. 

In addition, the natural mortality rates of kit and 
adult females are important determinants of 
population growth across all densities. There is some 

difficulty in measuring these rates, since the most 
common method of estimating age-related mortality is 
from the age-distribution of the harvest, which 
confounds natural and harvest mortality. The range 
of values mentioned for these parameters is huge, and 
these rates may vary regionally as well as temporally. 

At high density, the population dynamics are 
much different than at low or medium densities. Two 
of the parameters that govern density-dependent 
dispersal mortality, adisp and bctisp, have an effect on 
the growth of the population at high density, though 
not nearly the effect that litter size has. Estimation of 
these two parameters would require a careful study of 
dispersal mortality. 

Estimation of the eight aforementioned 
parameters (Table 6), as well as an understanding of 
their temporal variability, would allow calibration of 
this population model for a particular region across 
the entire range of possible densities. Priorities for 
further refining the model would depend on the 
density of the population in question and the goals of 

Table 6. Important parameters to estimate. This is just a condensed version of 
Table 5, with only the top three rankings shown for each density. 

Description Low Medium High 
lA Adult litter size 1 1 
agemax Relative litter size parameter 3 2 
k Relative litter size parameter 3.5 

. !~~(02 !'2 __ !Y~n!~r _n_:~r!~l~ty,_~i~ ~e~aJ~ ______ 2:_ _______ ~ ___________ . 
bctisp Upper occupancy threshold 2 

for dispersal mortality 
effect 

Lower threshold for same 3.5 
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management. In most cases where there is active 
beaver management, the goal is to maintain a 
"medium" population density, in which case, the 
results in Tables 4 and 5 can be used as a decision aid 
to guide research. 

The sensitivity analysis shows that there is only 
one critical parameter and a small number of 
additional parameters that drive the dynamics of this 
model. This suggests that a refined version of the 
model, designed for practical use by beaver 
managers, should require explicit specification of the 
high priority parameters, but could condense the 
remaining parameters into a more simplified form. 

6 Summary 

I have presented a biologically-based, detailed 
population model for beaver that incorporates a great 
many of the dynamics that have been observed or 
suggested in past studies. It is my hope that its level 
of detail, its structure, and its parameter estimation 
motivate others to pursue a greater understanding of 
beaver population dynamics. I have shown that this 
model can be used to generate specific, testable 
hypotheses; that it can be used to identify research 
priorities; and that it can be used as a structure for 
synthesizing what is known about beaver population 
dynamics. 
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The structure of the model, specifically how 
density-dependent relationships have been handled, is 
certainly open to further evaluation, mainly because 
none of the density-dependent relationships suggested 
for beaver populations have ever been carefully 
documented. The high-density dispersal dynamics 
are the most speculative. Further, the dynamics of the 
model seem most complex at this density as well as 
most sensitive to small changes in the parameters. 
The only other population model I am aware of that 
addresses high-density dynamics in beaver is that of 
Molini et al. (1981)-between these two models, 
some very dramatic hypotheses are advanced. It is 
my conviction that where uncertainty about dynamics 
is large, these types of population models can provide 
guidance for research, whether it is pure research, or 
research tied to management. 
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