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A mathematical model for the dynamics of a harvested population of beaver (Castor 
canadensis) was developed based on the natural history and biochronology of the species. This 
discrete-time, deterministic model breaks the annual cycle of a beaver population into six periods 
and tracks the transitions between periods for forty sex/age classes. Density-dependent effects 
are incorporated in breeding rates of the young age classes and in dispersal mortality rates. 
General results from simulations with the model qualitatively matched results from several 
observational studies. Specific results from the model, however, included phenomena that have 
not yet been studied in the field: (1) the average colony size was an increasing function of 
occupancy rate (a measure of colony density); (2) an early harvest (prior to breeding) caused a 
greater reduction in the growth rate of the population than a late harvest when the population 
density was low, but the pattern was reversed at high population density; and (3) the occupancy 
rate remained near 1.0 (all potential colony sites filled) for sustained harvest rates below about 
20%, and decreased sharply with increases in harvest rate above that threshold. In the range of 
occupancy rates typically sought through management, the population size and occupancy rate 
were very sensitive to harvest rate, suggesting that there is considerable potential to control 
population size through adjustment of the harvest. Sensitivity analysis was used to identify 
priorities for parameter estimation in this model. A single parameter, the base adult litter size, 
was identified as the most important determinant of population growth rate, and hence, the 
parameter that should be most carefully estimated. The dynamics of this model depended 
heavily on the way density-dependent dispersal mortality was expressed, thus providing 
motivation for specific field studies to confirm or refute the predictions obtained through 
simulation. 
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1 Introduction 

In this paper I develop and explore a comprehensive 
population model for beaver (Castor canadensis) 
based on the biology of the species. There are four 
major purposes in building such a modeL First, I 
endeavor to synthesize existing knowledge about 
beaver biology so that it can be examined holistically. 
Such a synthesis can shed light on population 
dynamics, test long-held assumptions, and expose 
inconsistencies or gaps in current knowledge. 
Second, this model can be used to generate 
hypotheses to help guide field studies. Third, this 
model can help prioritize parameter estimation 
needed for management purposes by identifying those 
parameters whose uncertainty has the greatest effect 
on population dynamics of interest. Ultimately, this 
prioritization can also be used to guide refinement of 
the model itself, in an effort to produce a model that 
is useful to managers and that captures the key 
dynamics. Fourth, this model can be used as a 
simulation device for testing management policies. 
By using the detailed population model to represent 
the "truth" of nature, Runge (1999) examined the 
effects on management outcomes of having only 
partial knowledge of the truth and of making major 
changes to the way management is carried out. In this 
paper, I examine previous beaver population 
modeling efforts, develop a model based on 
biological information in the literature, then conduct 
several simulation experiments with the model to 
explore its dynamics. 

The model developed is a single-species, 
discrete-time, deterministic population model (though 
provisions are made to incorporate environmental 
stochasticity). Males and females are distributed 
among twenty age classes, the life span of beaver. 
The sex/age class is the basic unit in the model, but 
colony structure is incorporated to some extent. 

This paper was extracted from Chapter 3 of 
Runge ( 1999) with some minor modifications. I 
gratefully acknowledge the help of Aaron N. Moen, 
Charles E. McCulloch, Deborah H. Streeter, and 
Robert F. Gotie in the development of this work. 

2 Previous Efforts to Model Beaver Populations 

Surprisingly, for a species that has been studied so 
heavily, very few attempts at beaver population 
modeling have been published in the peer-reviewed 
literature. There is really only one full-fledged 
population model for beaver (Molini et al. 1981). 
There certainly must be quite a number of population 
models of varying complexity in use by beaver 
managers, and accounts of these may be found in 

internal documents, but any knowledge of them is not 
widely available. In addition, there are references to 
several theses and dissertations that contain 
information on population dynamics, but much of this 
work was never published. There is, however, a 
tremendous amount of information about particular 
aspects of population dynamics (see review in Runge 
1999), information that needs to be synthesized into a 
flexible, and biologically relevant, population model 
for beaver. 

2.1 Life tables and related calculations 

The most basic information about population 
dynamics is not so much a model but a description of 
a population. For instance, calculation of survival 
and fecundity rates in a life table describes a 
population, but it takes an additional logical step to 
assemble a model from this. There are a number of 
studies that provide some fairly complete descriptions 
of beaver populations. Payne (1984a, 1984b) 
presents relative mortality and fecundity estimates for 
beaver in Newfoundland, breaking the population into 
age-classes, but not differentiating between the sexes. 
These data are certainly extensive, but as pointed out 
by Lancia and Bishir (1985), Payne (1984a) makes 
some serious inferential errors. Nevertheless, with a 
little effort, and a few assumptions less radical than 
Payne's, a Leslie matrix model could be constructed 
from this information. 

Novak (1977, 1987a) and Swenson et al. (1983) 
provide formulas for estimating the average colony 
size from age-specific harvest data. Though this 
concerns population estimation, we might begin to 
think of these calculations as models because of some 
assumptions about how the colonies are structured. 
Specifically, they rely on the fact that a colony 
contains at most two reproductively mature adult 
beaver, and use this fact to convert the proportion of 
adults in the harvest into an estimate of the average 
colony size. Though this alone does not make such a 
calculation a population model, it hints at an 
approach that is used in some population models for 
beaver (e.g., Molini et al. 1981). This example, and 
the one before it, are characteristic of many studies of 
population dynamics of beaver which stop short of 
assembling their results into population models. 

2.2 Logistic models 

A number of studies have suggested that beaver 
productivity is density-dependent (Pearson 1960, 
Gunson 1970, Payne 1984b), so it is natural that a 
number of authors have mentioned a logistic model as 
appropriate for beaver (Nash 1951, Lancia and Bishir 
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1985, Baht eta!. 1993). Lancia and Bishir (1985) fit 
a logistic model to their data from a nonexploited 
population from Prescott Peninsula, Massachusetts, 
and argued that the intrinsic rate of increase should be 
between 0.35 and 0.45 for most beaver populations. 
They were using this model as an example to 
illustrate their points in an argument about something 
else, however, and did not seem to intend that such a 
simplistic and empirical model be taken too seriously. 
Nevertheless, Baht et al. (1983) took them at face 
value and used a logistic model (with Lancia and 
Bishir's point estimate for the rate of increase) in the 
analysis of a beaver management problem. 

2.3 Colony models 

In an unpublished model used internally in the New 
York State Department of Environmental 
Conservation (NYSDEC), Robert F. Gotie (pers. 
com.) took a very different approach to modeling a 
beaver population. Responding to studies that 
suggested that beaver population growth depends on 
colony occupation rates (e.g., Parsons and Brown 
1979), Gotie built a model with the colony, rather 
than the individual, as the central unit of the 
population. Instead of having a structured population 
with individuals divided into age-classes, Gotie's 
model has a structured population with colonies 
divided into single, pair, or family classes. 
Transitions between these classes take the place of 
mortality and fecundity-for instance, two single 
colonies can merge to become a pair colony (through 
mating), a pair colony can become a family colony 
(through reproduction), a family colony can produce 
a single colony while remaining a family colony 
(through dispersal of two-year-olds), etc. Most of 
Gotie's estimates of these class transitions are based 
on only one study (Payne 1982) and would need more 
justification and support to be convincing. 
Nevertheless, this model offers the important 
reminder that beaver life-history depends critically on 
the colony. 

Gotie's model can be described as a matrix 
model, with the state of the system being the number 
of colonies in each of the three classes, and a 3 x 3 
transition matrix being used to calculate the state of 
the system in the next time period. By treating the 
transition rates as transition probabilities, this could 
be converted into a Markov model. To be more 
realistic, however, I would increase the number of 
possible classes to include a much finer structure to 
the population. For instance, I would have several 
"single" classes: single yearling male, single yearling 
female, single adult male, single adult female. The 
"family" classes would be fairly complex, 
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distinguished by the age and sex composition of the 
colony. The transitions would then look, for instance, 
at the probability of 2-breeding-adult, 2-yearling, 4-
kit colony becoming a 2 breeding-adult, 2-yearling 
colony (through dispersal or death of the yearlings 
and 50% survival of the kits). In essence, this would 
turn into an individual-based model, with the status of 
the individual's colony being a key consideration in 
determining the probability of survival or 
reproduction. Estimation of some of the transition 
probabilities would be almost sheer speculation, and 
there would be a great many to estimate. Thus, while 
such a model might be of interest on theoretical 
grounds, I would not pursue it for practical purposes. 

2.4 Stochastic models 

The most sophisticated and carefully considered 
beaver population model available in the published 
literature is that of Molini et al. (1981). This model, 
which was designed to represent a nonexploited, 
growing population, incorporates demographic 
stochasticity and density-dependence in an age­
structured depiction of the female segment of the 
population. Demographic stochasticity is included in 
five life-history events: survival, dispersal, and pair 
formation are all modeled with binomial distributions; 
replacement of deceased females in established 
colonies with subadult females is modeled with a 
combinatoric box-and-ball type of distribution; and 
litter size is modeled with an empirical distribution. 
The binomial probabilities used for the dispersal rate 
and the pair formation rate are both density­
dependent. Dispersal is assumed to be a decreasing 
function of density-as density increases and fewer 
uncolonized sites are available, two-year-olds reduce 
their risks by delaying dispersal. The pair formation 
rate among dispersed sub-adults also depends on the 
availability of uncolonized sites. As the density 
increases and fewer sites are available, dispersed 
beaver are unable to form a pair and establish a 
colony, and are assumed to die. At saturation 
densities, most of the mortality in the population is of 
these dispersed sub-adults that failed to form a pair. 
All other survival rates are quite high (> 95% ). Thus, 
the major limiting resource in this model is the 
number of potential colony sites, and the model 
shows sigmoid growth. If the model were expanded 
to include harvesting, so the density could be 
artificially maintained at a low occupancy rate, this 
effect of extremely high mortality of sub-adults would 
be substantially reduced. A final component of 
interest in this model is the mortality of all kits and 
yearlings in a colony in which the adult females dies 
and is not replaced by a sub-adult. 
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Simulations with this model produced results that 
roughly resembled the observed population trajectory 
in Prescott Peninsula, Massachusetts (Molini et a!. 
1981). In addition, the equilibrium age-distribution 
and age-specific survival rates were supported by 
other observations in the literature, although sub-adult 
mortality seemed to be higher than typically reported. 
The simulations showed considerable variation as a 
result of the demographic stochasticity, although 
Molini et a!. did not look at how this variation was 
affected by the maximum number of colony sites (50 
in their simulations). I would expect that this 
variation would be less significant across larger areas 
where the maximum colony number, and hence, 
population size, was much higher. It is not clear how 
relevant the two major forces of this model, density­
dependence and demographic stochasticity, would be 
to the manager of a large, exploited population that 
was held far below the saturation level. 

3 Population Model 

I have taken components of the aforementioned 
models and combined them with other insights about 
beaver population dynamics from the literature to 
develop a comprehensive, biologically-based 
population model. The context underlying this model 
is a large, managed beaver population that is actively 
trapped and maintained at a density below any natural 
saturation level ("carrying capacity"). 

The population model developed herein treats the 
sex/age class as the primary unit and tracks the 
dynamics of the population through 6 periods in each 
successive annual cycle. The population size in age 
class a and sex class s, during period p of year t is 
given by x( a,s,t,p). Thus, the total population size 

during period p of year t is 

LLx(a,s,t,p). (1) 
a s 

The computer code based on this model, used 
subsequently for simulation, can be found in the 
appendices of Runge ( 1999) or obtained from the 
author in electronic form. 

3.1 Biochronology 

The concept of biochronology, introduced by Moen 
(1973), refers to the sequence of significant events 
that occur in the life of an individual organism. The 
model is structured around the natural biochronology 
of beaver, shown schematically in Figure 1. The 
annual cycle begins with the post-parturition 
population, the population immediately following the 
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birth of kits. In the northeast United States, this 
occurs in early June (Jenkins and Busher 1979). The 
population suffers natural mortality through the 
summer and early fall as a result of a number of 
factors, including dispersal and predation, and in kits, 
malnourishment, to produce the post-dispersal 
population. By this point in the annual cycle, most 
dispersal is complete and the beavers begin to prepare 
for winter. Over the next 8 months, the population 
undergoes natural mortality due to a number of 
factors, collectively called "winter mortality," 
including starvation, exposure to the elements, and 
predation, to produce the pre-parturition population. 
At this point, all living individuals are promoted to 
the next age class, and kits are born to produce the 
post-parturition population, and the cycle begins 
again. 

Human intervention in this biochronology, that 
is, wildlife management, adds two additional forms of 
mortality and inserts one monitoring event per annual 
cycle, as shown in the schematic in Figure 2. The two 
forms of mortality are nuisance control and regulated 
fur harvest, the latter divided into an early and a late 
season. The monitoring, when practiced, usually 
occurs after leaf fall and before freeze-up (Hay 195 8), 
and typically consists of aerial surveys. As before, 
the annual cycle begins with the post-parturition 
population (period 1, p = 1). Nuisance control from 
this point until the early harvest season (around 
October 1) removes animals to produce the post­
weaning population (p = 2). This includes the death 
of kits as a result of the removal of their mother 
through nuisance control prior to weaning. Natural 
summer mortality acting during the next transition 
results in the pre-harvest population (p = 3, 
equivalent to the post-dispersal population in the 
absence of human intervention). Since aerial counts 
are usually made at this time, this population is also 
the population which is surveyed. Early harvest and 
nuisance control, acting throughout the late fall and 
early winter, produce the post-early-harvest 
population (p = 4). This population then undergoes 
natural winter mortality to become the pre-late­
harvest population (p = 5). Late harvest and nuisance 
control, acting throughout the late winter and early 
spring, produce the pre-parturition population (p = 
6). Living individuals are promoted and kits are born 
to produce the post-parturition population (p = 1), 
and the cycle begins again. 

Several details of the biochronology chosen for 
the population model require comment. First, the 
harvest is broken into two periods, early and late, to 
acknowledge that harvest is typically bimodal with 
peaks occurring during open water periods at the 
beginning and end of the season, and to reflect the 
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Post -dispersal 
Population 

Summer mortality 

Post-parturition 
Population 

Winter mortality 

RepmduoHo~ Pre-parturition 
Population 

Figure 1. Biochronology of the beaver population model in the absence of human intervention. The circles 
represent the population at three periods within the annual cycle and the arrows represent the events which change 
the population. Compare to Figure 2. 

management practice of extending the season or 
having a late season to add to a low early harvest. 
From a biological standpoint, it is important to 
distinguish these periods, since if the male of a pair is 
trapped, how that affects reproduction depends on 
whether the male was removed before or after 
breeding. Second, winter mortality is placed between 
these two periods during the time when the weather is 
coldest, the ice is thickest, and the risk of death due to 
exposure or lack of access to food is greatest. While 
natural mortality and harvest act simultaneously from 
late fall to early spring, the harvest tends to be lower 

during the coldest part of winter. It is reasonable to 
expect natural mortality rates due to cold, ice, and 
inability to reach a food cache to be highest at this 
time, and thus, modeling these factors as separate is 
not a great deviation from reality. Third, a similar 
separation of nuisance control and natural summer 
mortality is made in the model. Animals taken by 
nuisance control between parturition and the 
beginning of the trapping season are removed from 
the modeled population first, and the remaining 
individuals face natural mortality. While natural 
mortality and nuisance control actually act simultan-
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Figure 2. Biochronology of the beaver population model in the presence of human intervention. The circles 
represent the population at the six periods within the annual cycle and the arrows represent the events that change the 
population 

eously, constructing the model this way reflects the 
fact that some of the animals that would have died 
from natural causes were already taken by nuisance 
control. 

3.2 Population structure 

This population model structures the beaver 
population into forty sex/age classes. The individuals 
in these classes are also grouped into colonies. 

Age classes. Twenty age classes are used in the 
model, age 0 (kits), age 1 (yearlings), age 2 (two­
year-olds), and ages 3-19 (adults). Kits are in age 

class 0 at birth and remain there until the following 
parturition period, when they advance to age class 1. 
All other age classes also advance at the time of 
partuntwn. Twenty age classes are used because 
each age class in the potential life span of an 
individual needs to be represented in order to capture 
the many age-related population dynamics. 

Sex classes. Each of the twenty age classes is 
further divided into two sex classes, male and female. 
The number of male yearlings alive in period p of 
year t, for instance, is designated as x(l, M, t, p) . 

Colony structure. Tjle population dynamics are 
modeled at the level of the sex/age class, and the 
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number of colonies is calculated from this for two 
reasons: first, the density dependence (see "Density 
dependence," p. 9) is governed by the fraction of 
potential colony sites that are occupied (the 
occupancy rate); and second, census methods for 
beavers typically count colonies, not individuals. The 
number of colonies is determined by summing the 
number of potentially breeding females in the pre­
harvest population (period 3). Since females that are 
1.5 years old (yearlings, age class 1) in the fall 
sometimes disperse and breed if the population 
density is low, their breeding rate needs to be taken 
into consideration, as does that of age class 2 females. 
Females in age class 3 and above are assumed to have 
dispersed and formed colonies. Thus, 
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b1x(l, F ,t ,3) +b2x(2, F ,t ,3) + L,x(a,F,t ,3) (2) 
a=3 

gives the number of colonies in year t, where b1 and 
b2 are the breeding rates for yearling and two-year­
old females in year t. These breeding rates are 
discussed in more detail below. Note that this 
method of calculating the number of colonies from 
the age structure assumes that two adult females are 
never found in the same colony and that a colony 
always contains a breeding female, assumptions that 
have been supported in field studies (Bergerud and 
Miller 1977). 

3.3 Initialization 

In an iterative model such as this, an initial sex/age 
structure needs to be specified as a starting point from 
which calculations can be made. For the model to be 
realistic, the initial population needs to be represented 
with a biologically reasonable population structure. 
Since the survey is usually taken of the pre-harvest 
population, the initial population is constructed for 
period 3 (p = 3). The structure of this initial 
population is controlled through five parameters: the 
total size of the population, the overall sex ratio, and 
the fraction of kits, yearlings and two-year-olds in the 
population. The fraction of adults in the population is 
found by subtraction. The total population is 
subdivided proportionally into male and female kits, 
yearlings, and two-year-olds. To initialize all of the 
adult age classes, it is not acceptable to divide the 
adults equally among all age classes. Rather, the 
adult age classes need to reflect the declining 
proportions due to mortality, based on an average 
total annual adult mortality rate (m, default 0.3). The 
adult age classes are then initialized so that the ratio 
of any age class to the previous age class is the 
survival rate (1 - m) corresponding to this mortality 
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rate. This is done by noting that the numbers of 
adults in each age class form a geometric series with 
parameter (1 - m), and the total number of adults is a 
partial sum of this geometric series. Specifically, the 
number of adults is given by 
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L,L,x(a,s,t,3) (3) 
a=3 s 

where 

x(a+1,s,t,3)=(1-m)·x(a,s,t,3). (4) 

Equation 3 can thus be written as 

19 

L,L,x(3,s,t,3)(1-m)a-3 , (5) 
a=3 s 

which is a partial geometric series that can be 
simplified to 

[~ ][1-(1-m) 17
] .L.i x(3, s, t ,3) . 

s 1-(1-m) 
(6) 

Setting equation 6 equal to the known total number of 
adults and solving for the first sum results in the 
number of adults in age class 3. These are then 
divided between the two sexes. From there, equation 
4 is used to calculate the number of adults in all other 
sex/age classes. 

This initialization requires six parameters (total 
population size, fractions of kits, yearlings, and two­
year-olds, fraction female, and average annual adult 
mortality). The population initialized in this manner 
will not necessarily match the sex/age class 
distribution of a real population or of one produced 
by the model after several iterations for three reasons: 
first, the same sex ratio is used across all age classes; 
second, all adults are assumed to be equally 
vulnerable, that is, have the same mortality rate; and 
third, the last five parameters may not be correct. 
Nevertheless, if the last five parameters are chosen 
carefully, the initialized population is expected to 
have a reasonable sex/age structure. Where needed, a 
more detailed initialization method repeats the 
following set of steps until a stable sex/age 
distribution is found: the population is initialized as 
above, run through the model for one time step, and 
reinitialized with the resulting age and sex 
distributions. 

3.4 Early harvest and nuisance control 

In this and following sections, the details of the steps 
of the model are described chronologically, beginning 
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with the pre-harvest population. As noted above, the 
population is initialized at the pre-harvest period (p = 
3). The transition from the pre-harvest population (p 
= 3) to the post-early-harvest population (p = 4) is a 
result of the impacts of early harvest and nuisance 
control. In the northeast United States, this time 
period runs from around October to February. The 
model requires the specification of the known total 
harvest and the known total number of beaver 
removed by nuisance control. 

Harvest. The total number of harvested animals 
is removed from the population using sex- and age­
specific relative harvest rates, referred to herein as 
harvest vulnerabilities. Most studies have shown that 
harvest is not usually biased by sex (Payne 1982) or 
age (Novak 1987 a), thus the default values for all the 
harvest vulnerabilities are 1, but the option is 
included in the model to specify other values. 

Nuisance control. The beavers removed by 
nuisance control during this transition are removed 
from the modeled population proportionally across all 
sex/age classes. In nuisance control situations, whole 
colonies are typically removed. Provided that 
colonies removed are representative of all the 
colonies, colony composrtlon should reflect 
population composition, and there should be no bias 
by sex or age in the beavers removed by nuisance 
control. 

Parameters and equations. The model requires 
specification of the total number harvested, H(t, 3), 
and the total number removed by nuisance control, 
N(t, 3). The harvest vulnerabilities are given by vH(a, 
s, t), and represent relative rates of harvest between 
sex/age classes. The default value for all of these is 
1. The harvest rate for a given sex/age class is 

( ) - vH(a,s,t)H(t,3) 
h a,s,t,3 - ~ . (7) 

LJ vH(a,s,t)x(a,s,t,3) 
a,s 

Since it is assumed there is no bias in the nuisance 
control, there is only one nuisance control rate, 

( 3) = N(t,3) 
n t, ~ . 

LJ x(a, s,t ,3) 
(8) 

a,s 

The period 4 population is calculated, for all a and s, 
as 

x(a,s,t,4) = x(a,s,t,3) ·(1-h(a,s,t,3) -n(t,3)) (9) 

with adjustments made to be sure that the sum of the 
harvest and nuisance rates does not exceed 1.0 for 
any sex/age class. 
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3.5 Winter mortality 

The transition from the post-early-harvest population 
(p = 4) to the pre-late-harvest population (p = 5) is a 
result of the impacts of winter mortality. As noted 
above, this transition reflects the fact that during the 
coldest part of the winter, when ice is thickest, the 
harvest rates drop and much of the mortality can be 
attributed to natural causes. In the northeast United 
States, this transition occurs from mid-January to late 
February. Mortality rates for male and female kits, 
yearlings, two-year-olds, three-year-olds, and adults 
need to be specified. In addition, vulnerability curves 
are used to represent the relative mortality in the 
female and male adult age classes. 

Mortality. Mortality rates may differ between 
sexes and between age classes. In the kit, yearling, 
two-, and three-year-old age classes, the number that 
survive is the product of the initial number and the 
survival rate for that age class and sex. 

Adult vulnerability. For adults, a vulnerability 
curve reflects the relative mortality in different age 
classes (Figure 3). This relative mortality is 
multiplied by the base mortality rate to determine the 
mortality rate for a particular adult sex/age class. Of 
course, if this product is greater than 1.0, the 
mortality is truncated to 1.0. The model allows for 
different vulnerability curves for each sex. 

Parameters and equations. The model requires 
the winter mortality rates for male and female kits, 
mw(O, M, t) and mw(O, F, t), yearlings, mw(1, M, t) 
and mw(l, F, t), two- and three-year-olds (specified 
analogously), and adults, mw AM(t) and mw AF(t). 
Default values are shown in Table 1. In addition, 
vulnerability curves for male and female adults need 
to be constructed. Based on the age-specific 
mortality patterns of mammals in general, one might 
expect adult beaver vulnerability to rise slowly in the 
younger adults, then more sharply in the very old. 
Thus, the default vulnerability curve is modeled with 
a double exponential expression 

c (s)e-ki(s)a +c (s)e-k2(s)a 
v(a s) = 1 2 (10) 

, Ct(s)e-4ki(s) +c2(s)e-4k2(s) , 

which gives a vulnerability of 1.0 to age class 4. 
Note that the specified base adult mortality rate is the 
mortality rate for an age class with a vulnerability of 
1.0. The default values used for the parameters of 
this vulnerability curve are those found by fitting the 
curve to Payne's (1984a) data, and are the same for 
both sexes: c1 = 0.62, c2 = 3.3 x 10-8, k1 = 0.048, and 
k2 = 0.95. Because of the way the denominator of 
equation 10 adjusts the vulnerabilities, the actual 
values of c1 and c2 are not important, only their ratio. 
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Figure 3. Adult vulnerability curve. The mortality rate for an age 
class is found by multiplying the base adult mortality rate by the 
vulnerability for that age class. The open circles are the age-specific 
mortality rates calculated by Payne (1984a), adjusted so the fitted line 
gives a vulnerability of 1 for age class 4. The fitted line was found by 
nonlinear least squares regression (using SAS PROC NLIN), using a 
double exponential function. 

The period 5 population is calculated with 

x(a,s,t,5) = x(a,s,t,4)·(1-mw(a,s,t)) (11) 

for all sand for a :5: 3, and with 

x(a,s,t ,5) = x(a,s,t ,4) · (1- mw As (t) · v(a,s)) (12) 

for all s and for a > 3, subject to the constraint that 

mwA5 (t)·v(a,s) :5:1. (13) 

Table 1. Default winter mortality rates. The 
mortality rate for kits is based on a comparison of 
Svendsen (1980) and Gunson (1970), and that for 
yearlings is based on Svendsen (1980) and Molini et 
al. (1981). The default value used here is the average 
of the extremes reported by Boyce (1981, 20%, 
Alaska) and used by Molini et al. (1981, 0%, 
Massachusetts). 

Sex\A e 0 
Male 

Female 
0.073 
0.073 

1 
0.016 
0.016 

2 
0.100 
0.100 

3 
0.100 
0.100 

Adult 
0.100 
0.100 

3.6 Late harvest and nuisance control 

The transition from the pre-late-harvest population (p 
= 5) to the pre-parturition population (p = 6) is a 
result of the impacts of late harvest and nuisance 
control. In the northeast United States, this transition 
runs from about March to June. The model requires 
specification of the known total harvest and the 
known total number of beaver removed by nuisance 
control. Note that the late harvest season (if it exists) 
only lasts until late March, but nuisance control can 
continue until the date of parturition. 

The calculations for this transition are exactly 
analogous to those for the early harvest transition (see 
"Early harvest and nuisance control," page 6), and the 
same vulnerabilities are used. Letting H(t, 5) and N(t, 
5) represent the total number of animals removed by 
harvest and nuisance control during this time period, 
the harvest and nuisance control rates, h(a, s, t, 5) 
and n(t, 5), are calculated with equations analogous to 
7 and 8, respectively. Then, the period 6 population 
is calculated, for all a and s, as 

x(a,s,t ,4) = x(a, s,t ,3) · [1- h(a,s,t ,3)- n(t ,3)] (14) 

with adjustments made to be sure that the sum of the 
harvest and nuisance rates does not exceed 1.0 for 
any sex/age class. 
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3. 7 Reproduction 

The transition from the pre-parturition population (p 
= 6) to the post-parturition population (p = 1) is a 
result of all animals advancing in age class and of 
females giving birth. Unlike the other transitions in 
this model, this transition is treated as being 
instantaneous in time, thus assuming that all births 
occur at once. The following parameters are 
required: reproductive rates (in kits/litter) for 
yearlings and adults; the percentage of female kits in 
the litters; density-dependent relationships for the 
fractions of yearling, two-, and three-year-old females 
that breed; and a relative reproductive rate curve for 
adult females. 

Density dependence. A density dependent effect 
on reproduction has been noted in several studies 
(Henry and Bookhout 1969, Nordstrom 1972, 
Kudrisahov 1975, Vanden Berge and Vohs 1977, 
Swenson et al. 1983, Peterson and Payne 1986, see 
review in Runge 1999). In particular, when the 
occupancy rate is low, sexual maturation occurs 
earlier (Parsons and Brown 1979, Payne 1982, 
1984a). In the model, the user defines three density­
dependence curves that relate the fractions of young 
females that breed to the occupancy rate (Figure 4). 
This curve assumes that there is a maximum fraction 
breeding up to a certain density, then a linear decline 
to a minimum fraction breeding. As there is no 
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evidence for density-dependence in breeding or 
pregnancy rates in older age classes, the model 
assumes that all females four and older potentially 
breed. 

Relative reproductive rates. Litter size in adult 
females increases with advancing age of the mother 
until about age 8, stays steady for a number of years, 
and then declines somewhat in the very old (Novak 
1987a, Payne 1984b). The model allows 
specification of the relative reproductive rates of 
females by age class. This relative rate is multiplied 
by the base adult litter size to arrive at the average 
litter size for a particular age class of females. The 
default relative reproductive rate curve uses a 
quadratic relationship that closely matches data found 
in the literature (Payne 1984b, Gunson 1967). Note 
that this curve has a maximum of 1 for females giving 
birth at ages 8 and 9, thus, the base adult litter size 
should be the average litter size for females of such 
ages, not for all females. 

Sex ratio at birth. The model assumes that the 
sex ratio at birth is not density dependent and is the 
same for all age classes of females. There is not 
convincing evidence in the literature that the female 
fraction in the litters is any different from 50%, which 
is the default value used in the model. 

Effect of early harvest on breeding. The 
reduction of pregnancy rates due to trapping of the 
male after pair-bonding but before breeding (i.e., 
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Figure 4. Density-dependence of reproduction in the younger age­
classes. The fraction of females breeding is shown for yearlings, two­
year-olds, and three-year-olds. The user specifies the six marked points 
in order to define these three relationships. The default values were 
obtained from a synthesis of the literature (see Runge 1999). 


