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Abstract

Beavers have the ability to modify ecosystems profoundly to meet their ecologi-

cal needs, with significant associated hydrological, geomorphological, ecologi-

cal, and societal impacts. To bring together understanding of the role that

beavers may play in the management of water resources, freshwater, and ter-

restrial ecosystems, this article reviews the state-of-the-art scientific under-

standing of the beaver as the quintessential ecosystem engineer. This review

has a European focus but examines key research considering both Castor

fiber—the Eurasian beaver and Castor canadensis—its North American coun-

terpart. In recent decades species reintroductions across Europe, concurrent

with natural expansion of refugia populations has led to the return of C. fiber

to much of its European range with recent reviews estimating that the C. fiber

population in Europe numbers over 1.5 million individuals. As such, there is

an increasing need for understanding of the impacts of beaver in intensively

populated and managed, contemporary European landscapes. This review

summarizes how beaver impact: (a) ecosystem structure and geomorphology,

(b) hydrology and water resources, (c) water quality, (d) freshwater ecology,

and (e) humans and society. It concludes by examining future considerations

that may need to be resolved as beavers further expand in the northern hemi-

sphere with an emphasis upon the ecosystem services that they can provide

and the associated management that will be necessary to maximize the bene-

fits and minimize conflicts.

This article is categorized under:

• Water and Life > Nature of Freshwater Ecosystems
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1 | INTRODUCTION

Over millions of years, beavers (Castoridae) have developed the ability to modify ecosystems profoundly to meet their
ecological needs. In doing so, they also provide valuable habitats for many other species that thrive in wetlands. They
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engineer ecosystems by building dams, which retain ponds, full of sediment, nutrients, plants, and wildlife. These dams
slow the flow of water, reducing peak flows downstream (Puttock, Graham, Cunliffe, Elliott, & Brazier, 2017), storing
and gently releasing water in times of drought (Hood & Bayley, 2008). Beavers excavate canals, laterally across flood-
plains, to access and transport food and building resources, enhancing floodplain connectivity, and geomorphic dyna-
mism (Gorczyca, Krzemie�n, Sobucki, & Jarzyna, 2018; Pollock et al., 2014). They coppice trees, providing deadwood
habitat and allowing sunlight to reach understory vegetation which in turn responds in abundance and diversity (Law,
Gaywood, Jones, Ramsay, & Willby, 2017), providing rich habitat for insects, birds, bats, and amphibians (Dalbeck,
Hachtel, & Campbell-Palmer, 2020; Stringer & Gaywood, 2016; Willby, Law, Levanoni, Foster, & Ecke, 2018). Beavers
were once present throughout Europe, Asia, and North America in large numbers, managing water resources, working
with natural processes, supporting the healthy functioning of freshwaters—the very definition of a keystone species.

Consider the potential implications of removing such an animal from our ecosystems. Large areas of stored surface
water are lost, rivers flow faster, becoming flashy in times of flood and with lower baseflows in times of drought. Woody
debris, carbon in water—an essential building block of life in ponds, streams, rivers, estuaries, and marine environ-
ments is reduced, undermining the food-chains that it supported. Wetlands dry up, wildlife move on, or are possibly lost
from ecosystems entirely. During the Anthropocene, our catchments have largely become a product of human activity
that realizes all of these implications, with associated additional pressures including; hydrological extremes, diffuse pol-
lution, and soil erosion (Hewett, Wilkinson, Jonczyk, & Quinn, 2020). The natural disturbance and dynamic equilib-
rium maintained by beaver activity drives geomorphic and ecological complexity, in their absence, riparian ecosystems
have taken on a simpler form both in terms of their structure and their function (Brown et al., 2018).

In the Northern hemisphere, beavers were hunted to near extinction and extirpated entirely in countries such as
Great Britain (GB) about 400 years ago (Conroy & Kitchener, 1996). Thus, our living memory of what beaver-lands
were like, is limited, in landscapes where natural recolonizations or reintroductions are now taking place. Our under-
standing of how other species co-existed with beavers, many of them dependent upon wetlands such as beaver ponds, is
similarly limited. There is thus a requirement to understand the impact of beavers in contemporary ecosystems, particu-
larly in landscapes that, since their extirpation, have been over-exploited, degraded, and altered by intensive farming
and urban development.

To bring together understanding of the role that beavers may play in the management of water resources, freshwa-
ter, and terrestrial ecosystems, this paper reviews the state-of-the-art scientific understanding of the beaver as the quin-
tessential ecosystem engineer. We focus upon research considering both Castor fiber—the Eurasian beaver and Castor
canadensis—its North American counterpart, as they re-establish in ecosystems within which their numbers were deci-
mated and are reintroduced or return to ecosystems from where they were extirpated, due to their high-value fur (for
hats), castoreum (as a painkiller and perfume)—Nolet and Rosell (1998), and their scaly tail, which led the Catholic
church to classify beavers as a fish—fit for consumption on Fridays and Saints days (Coles, 2006; Kitchener &
Conroy, 1997; Manning et al., 2014).

The remaining two species of beaver are related to pre-historic Castoridae which included as many as 40 species, for
example, the giant beaver (C. Castorides spp; Martin, 1969) and the terrestrial C. Paleocastor spp, famed for its spiralized
burrows (Martin & Bennett, 1977). Today, the two extant species of beaver are genetically distinct with differing num-
bers of chromosomes (Kuehn, Schwab, Schroeder, & Rottmann, 2000). Despite their genetic and minor physiological
differences, there are many similarities between the species. For example, they are visually similar and difficult to dif-
ferentiate by sight alone (Kuehn et al., 2000). Until relatively recently, it was considered that the North American bea-
ver had a tendency to build dams and lodges more frequently and of a greater size than the Eurasian beaver, but it has
now been shown by Danilov and Fyodorov (2015) that, under the same environmental conditions, the building behav-
ior of the two species does not differ.

In recent decades species reintroductions across Europe, followed by natural expansion has led to the return of
C. fiber to much of its Eurasian range (Halley, Rosell, & Saveljev, 2012) with a recent review of national population
studies, estimating that the C. fiber population in Europe numbers over 1.5 million individuals (Halley et al., 2012). As
such, there is an increasing need for understanding of the impacts of beaver in intensively populated and managed
modern European landscapes. This review focuses on Europe and C. fiber but draws on relevant research into
C. canadensis in North America. The review summarizes how beaver impact: (a) ecosystem structure and geomorphol-
ogy, (b) hydrology and water resources, (c) water quality, (d) freshwater ecology, and (e) humans and society. It con-
cludes by examining future scenarios that may need to be considered as beavers expand in the northern hemisphere
with an emphasis upon the ecosystem services that they can provide and the associated management that will be neces-
sary to maximize the benefits and minimize conflicts.
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2 | BEAVER IMPACT UPON THE ENVIRONMENT—CONTEMPORARY
UNDERSTANDING

2.1 | Impacts of beaver upon geomorphology

2.1.1 | Overview

We take this opportunity to revisit Gurnell's (1998) review on the hydrogeomorphological effects of beaver, which pro-
vides an excellent foundation for our understanding. Beavers, as ecosystem engineers, have a marked influence upon
the terrestrial and riverine environments that they occupy (Westbrook, Cooper, & Baker, 2011). Beavers are primary
agents of zoogeomorphic processes; here we acknowledge their influence upon river form and process (Johnson
et al., 2020) and discuss recent literature on the impacts of beaver on hydrogeomorphology.

2.1.2 | Canal and burrow excavation

Beavers are well known for their construction of impressive lodges, sometimes as tall as 3 m (Danilov &
Fyodorov, 2015), but beavers, especially in river systems, typically excavate bank burrows in which to establish dwell-
ings (Collen & Gibson, 2000; Rosell, Bozer, Collen, & Parker, 2005). Beavers often excavate multiple burrows in a single
territory, which can contribute significant volumes of sediment to a watercourse (de Visscher, Nyssen, Pontzeele, Billi, &
Frankl, 2014; Lamsodis & Ulevičius, 2012) and also create areas of weakness which can lead to localized erosion and,
in some instances, the collapse of earthen flood embankments (Harvey, Henshaw, Brasington, & England, 2019).

Beavers commonly dig shallow channels, often referred to as canals, which extend laterally from beaver ponds.
These structures enable beavers to access food and building resources more easily (Butler, 1991; Gurnell, 1998). Often
developing into dense networks, these canals contribute significantly to the local hydrogeomorphology of floodplains,
creating hydraulic roughness, tortuous flow paths, and complex topography in otherwise planar landscapes (Hood &
Larson, 2015). Like burrows, these canals may act as a source of fine sediment (Lamsodis & Ulevičius, 2012; Puttock,
Graham, Carless, & Brazier, 2018) or, in the event of significant overbank flows and floodplain inundation, sites of
deposition. It is interesting to consider that early humans might have moved over (crossing channels on beaver dams)
and through beaver landscapes crisscrossed by canals, observing beaver transporting woody building materials by water
with ease, and subsequently learning to do so themselves (Coles, 2006).

2.1.3 | Woody debris contribution

Woody debris is a key driver of geomorphic complexity, has been shown to be a fundamental aspect of “natural” stream
geomorphology and a critical habitat for aquatic life (Collen & Gibson, 2000; Gurnell, Piégay, Swanson, &
Gregory, 2002; Harvey, Henshaw, Parker, & Sayer, 2018; Thompson et al., 2018; Wohl, 2014, 2015). Beaver increase the
rate of both large and small woody material contribution to river systems (Gurnell et al., 2002). In small streams, the
large woody material (for example felled trees) is less mobile and often remains in place, exerting a strong influence on
geomorphic processes, increasing bed heterogeneity through promoting localized scour and deposition (Gurnell
et al., 2002). The contribution of smaller woody fragments or cuttings has been shown to significantly increase willow
(Salix spp) recruitment due to the provision of propagules, which can establish on gravel/sand bars (Levine &
Meyer, 2019). This increases the stability of depositional features and promotes rates of aggradation and bed/bank
stability.

2.1.4 | Dam building

Beavers have a preference for habitats with deep, slow-flowing water, to feel safe from predators (Collen &
Gibson, 2000; Hartman & Tornlov, 2006; Swinnen, Rutten, Nyssen, & Leirs, 2019). Therefore, their dam-building activ-
ity is typically restricted to lower-order streams where stream power is limited (Graham et al., 2020; Gurnell, 1998;
Macfarlane et al., 2015; Rosell et al., 2005) and water depths may not be sufficient (normally <0.7 m depth) for beaver
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movement and security. When dam building does occur, it increases the area of lentic (still freshwater) habitats in sys-
tems that are typically dominated by lotic (free-flowing freshwater) habitats (Hering, Gerhard, Kiel, Ehlert, &
Pottgiesser, 2001). Damming typically reduces downstream connectivity, and conversely increase lateral connectivity,
forcing water sideways into neighboring riparian land, inundating floodplains, and creating diverse wetland environ-
ments (Hood & Larson, 2015) as well as contributing to soil and groundwater recharge (Westbrook, Cooper, &
Baker, 2006). Dams vary significantly in their size and structure depending on physical factors such as hydrology,
topography, and building materials but also ecological factors (Graham et al., 2020). Hafen, Wheaton, Roper, Bailey,
and Bouwes (2020) found that primary dams, that maintained a lodge pond, were significantly larger than secondary
dams, which are used to improve mobility and the transport of woody material, concluding that beaver ecology, in addi-
tion to channel characteristics, exerts a primary control on dam size.

2.1.5 | Agents of erosion

Erosion often occurs at the base of dams, due to a localized increase in gradient and stream power (Gurnell, 1998;
Lamsodis & Ulevičius, 2012). Woo and Waddington (1990) observed that flow across the dam crest may be concentrated
in gaps, enhancing erosion of the stream bed and banks downstream of the dam, forming plunge pools, and widening
the channel, respectively. Lamsodis and Ulevičius (2012) observed the geomorphic impacts of 242 dams in lowland agri-
cultural streams in Lithuania; of which, 13 (5.4%) experienced scour around the periphery of the dam.

Beaver dams are also key sites for channel avulsion (Giriat, Gorczyca, & Sobucki, 2016; John & Klein, 2004), as
shown in Figure 1. John and Klein's (2004) study investigated the geomorphic impacts of beaver dams on the upland
valley floor of the third-order River Jossa (Spessart/Germany). Due to the creation of valley-wide dams, which extended
beyond the confines of the bank, multi-thread channel networks developed across the floodplain. Newly created chan-
nels would deviate from the main stream channel, re-entering the river some way downstream. At the point where the
newly created channel enters the stream, a difference in elevation results in the development of a knickpoint. This
knickpoint then propagates upstream through head-cut erosion, eventually relocating the main stem of the channel.

2.1.6 | Agents of aggradation

Hydrogeomorphic changes, due to beaver engineering, are likely to have implications for stores and downstream fluxes
of sediment and associated nutrients (Butler & Malanson, 1994; Lizarralde, Deferrari, Alvarez, & Escobar, 1996). Sedi-
ments mobilized and transported from upstream are deposited in beaver ponds, due to a decrease in velocity associated
with a reduction in water surface gradient (Giriat et al., 2016) and consequently stream power (Butler &
Malanson, 1994).

Pollock, Lewallen, Woodruff, Jordan, and Castro (2017) showed lower concentrations and loads of suspended sedi-
ment leaving a beaver site in contrast to those entering the site, while Puttock et al. (2018) showed that within the same
site the beaver pond sequence was storing 100 t of sediment combined with an associated 16 t of carbon and 1 t of nitro-
gen. It is therefore suggested that beaver dams and ponds can create landscapes with depositional sediment regimes
exerting a significant influence over channel sediment budgets, akin to the pre-anthropocene dam and woody debris
that once played a vital role in the evolution of river networks and floodplains, through the storage of sediment and
nutrients and creation of riparian wetland and woodland (Brown et al., 2018).

The large mass of sediment (over 70 kg per m2 of ponded extent) being stored in a relatively small area (1.8 ha)
reported by Puttock et al. (2018) represents similar levels of aggradation to those reported in studies, primarily from
North America. Beaver dam sequences on low order streams have previously been shown to account for up to 87% of
sediment storage at reach scales, while the removal of a sequence of beaver dams in Sandon Creek, British Colombia,
leads to the mobilization of 648 m3 of stored sediment (Butler & Malanson, 1994, 1995; Page et al., 2005). Butler and
Malanson (1994, 1995), also reported sediment accumulation rates of 2–28 and 4–39 cm year−1 for different beaver
pond sequences in Glacier National Park, Montana. Values of sediment accumulation from North American beaver sys-
tems indicate the estimated average accumulation value of 5.4 cm year−1 presented by Puttock et al. (2018) in Great
Britain may be at the lower end of what is possible in bigger dam–pond complexes or systems with a more plentiful sed-
iment supply. In one of the few other studies in European landscapes, de Visscher et al. (2014) studied sediment accu-
mulation in two beaver pond sequences in the Chevral River, Belgium. de Visscher et al. (2014) estimated the total
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FIGURE 1 Examples of dam construction and channel avulsion resulting from beaver dam construction from the River Otter

catchment, England. Panel (a) shows an example where a divergent flow path has re-entered the main channel resulting in head-cut erosion.

Panel (b) shows the type of multi-thread channel form that occurs downstream of dams in wide, low gradient floodplains. Panel (c) shows a

beaver dam on a 4th order stretch of river. (Reproduced with permission from Photos © Hugh Graham and Alan Puttock)
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sediment mass deposited in the dam sequences at 495.9 t. From the two pond sequences, average pond area was
200.4 m2, average sediment depth 25.1 cm, and average sediment mass of 14.6 t, equating to a normalized mass of
72.65 kg of sediment deposited per m2 of the pond. These values are very similar to the mean sediment depth of 27 cm
and mean normalized mass of 71.40 kg m2 reported from the intensively managed grassland catchment in the UK
(Puttock et al., 2018).

The sediment data published also demonstrate that beaver ponds can exhibit high sediment accumulation rates in
comparison with other wetland systems. As an example, in a review of sediment accumulation rates in freshwater
wetlands (Johnston, 1991) a mean annual accumulation rate of 0.69 cm year−1 was reported across 37 different wetland
types, ranging from riparian forest to wet meadows. As with the biodiversity benefits of beaver ponds (see Willby
et al., 2018 and Section 3 below) the high sediment accumulation rate of beaver ponds in relation to other freshwater
wetlands, may reflect the highly dynamic nature of beaver systems, their constant evolution, and sustained mainte-
nance (i.e., continuous dam-building).

The long-term fate of sediment will depend on the availability and composition of deposited sediment, the flow
regime, and the preservation of dam structures (Butler & Malanson, 2005; de Visscher et al., 2014). Over many years,
sediment may continue to accumulate until each pond fills completely and sediments are colonized by plants forming
beaver meadows (Polvi & Wohl, 2012). However, beavers can also contribute to downstream sediment budgets; through
the excavation of canal networks and bank burrows (de Visscher et al., 2014; Lamsodis & Ulevičius, 2012), in addition
to the release of sediment following dam outburst floods (Curran & Cannatelli, 2014; Levine & Meyer, 2014). Beaver
dam failure can result in releases of sediment (Polvi & Wohl, 2012) meaning that sediment storage in ponds can be
transient (de Visscher et al., 2014). However, different sediment retention dynamics have been reported following dam
collapse. For example, Giriat et al. (2016) found that there were very minimal losses of sediment from beaver ponds
studied in Poland, following a dam collapse. Similarly, the majority of sediments were retained in ponds and subse-
quently stabilized following dam reconstruction (Curran & Cannatelli, 2014; Levine & Meyer, 2014) most likely reduc-
ing the downstream release of sediment from any single dam failure within the complex (Butler & Malanson, 2005;
Puttock et al., 2018). While recent studies in North America involving extensive survey work have expanded knowledge
of beaver dam persistence significantly (Hafen et al., 2020), including persistence during large rainstorm events
(Westbrook, Ronnquist, & Bedard-Haughn, 2020), resilience, failure, and associated sediment dynamics are likely to be
highly spatially and temporally variable. As identified in Section 2.2 for both hydrological, geomorphic, and associated
sediment/water quality impacts a greater mechanistic understanding of dam failure is therefore still required.

Finally, high levels of nutrient-rich sediment have also been shown to result in further biogeomorphic alterations,
that is, colonization by homogeneous patches of herbaceous or shrubby species, adding roughness to topography,
reduced water velocities, and encouraging further deposition of sediments. Additionally, partial felling and submer-
gence of woody debris disrupts flows and when felled in-channel, creates reinforcement for existing dam structures
(Curran & Cannatelli, 2014).

2.1.7 | Impacts of dams on river profile

Beaver dams have two main effects on river profile; (a) long-profile is altered such that a stepped profile develops with
sections of reduced gradient, that promote aggradation, upstream of dams separated by hydraulic jumps, created by
flow over the dams, which initiates erosion. (b) Channel planform typically increases in complexity with many studies
reporting; greater sinuosity, channel width, and the development of a multi-thread planform (Ives, 1942; John &
Klein, 2004; Pollock et al., 2014; Wegener, Covino & Wohl, 2017). These increases in cross-profile complexity are driven
by an increase in the heterogeneity of flow direction, which drives lateral flow, increasing bank erosion, channel widen-
ing, and subsequent localized deposition (Gorczyca et al., 2018).

2.1.8 | Agents of river restoration

In an undisturbed or near-pristine riverine system, the engineering behavior of beaver may simply maintain an evolv-
ing geomorphic structure, sustaining a state of dynamic equilibrium in river function. In degraded landscapes (which
are much more common), where river planforms are incised, single thread, straightened, even dredged, and lacking in
geomorphic diversity, beaver have a dramatic impact on channel planform at multiple scales. In North America, beaver
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dams and their human-constructed counterparts, known as beaver dam analogs, have been shown to restore degraded
river systems (Pollock, Beechie, & Jordan, 2007), primarily through the aggradation of channel beds, leading to greater
channel-floodplain connectivity (Macfarlane et al., 2015; Pollock et al., 2014).

Dams, however, are not rigid structures—they influence and are influenced by flow regimes (Johnston &
Naiman, 1987) as is evidenced in Figure 2 (after Pollock et al., 2014). In narrow, incised channels, typical of degraded
landscapes, beaver dams will capture some sediment but predominantly provide a foci for erosion. In these confined
channels, unit stream power is high and therefore dams will frequently blow-out and erode laterally. The resultant
effect is a widening of the channel, which leads to a concomitant decline in stream power, thus allowing for greater
aggradation rates and less frequent blow-outs altering the sediment regime from net erosional to net depositional
(Butler, 1995; Butler & Malanson, 2005). Over time, incised, straightened streams can be restored to complex multi-
threaded channel systems that represent a return to the pre-anthropocene streams and rivers that were once common
across north-west Europe (Brown et al., 2018). In Poland, beaver initiated geomorphic processes were shown to alter
artificially homogenized river reaches and thus it has been suggested that they may have a substantial role to play in
the renaturalization of river systems (Gorczyca et al., 2018).

2.1.9 | Summary of geomorphic impacts

• Beaver damming activity is mostly limited to ≤fifth-order streams as low stream power is favorable for dam-building
and persistence, with a reduction in the frequency of blowouts.

• Beavers drive a transition in sediment dynamics from dominantly erosional to net depositional, while increasing the
spatial variability of both erosional and depositional features.

• Geomorphic change due to beaver is often characterized by changes in channel planform, longitudinal profiles, water
surface and channel bed slope, increased sinuosity, and enhanced floodplain connectivity and surface roughness.

2.1.10 | Gaps in geomorphic understanding

• At present, the majority of geomorphology-facing beaver research is from North America. Several studies from
Europe indicate strong parallels between the geomorphic impacts between continents. However, geomorphic impacts
are strongly influenced by local geography and therefore further monitoring is necessary to complement these
findings.

• Research on the impacts of beaver on geomorphic processes is required at larger spatial extents and longer temporal
scales. At present, most research focuses on site/reach scale observations, which must be continued in dialogue with
long-term, catchment scale monitoring and modeling to build understanding at landscape scales.

• The effects of beaver activity on short-term sediment storage/mobilization due to bank-burrowing and canal excava-
tion, has not yet been substantially investigated.

2.2 | Impacts of beaver upon hydrology

2.2.1 | Overview

There is an increased need to recognize the influence of biology upon river form and process (Johnson et al., 2020) and
beavers as recognized ecosystem engineers are a key example of the ability of an animal to influence hydrological func-
tioning. While other beaver engineered structures discussed in Section 2.1, such as burrows and canals, have a measur-
able impact (Grudzinski, Cummins, & Vang, 2019), the biggest (and most studied) hydrological impact of beavers
results from their dam-building ability and the consequent impoundment of large volumes of water in ponds (Butler &
Malanson, 1995; Hood & Bayley, 2008). Dam and pond features can alter hydrological regimes, both locally and down-
stream (Burchsted & Daniels, 2014; Polvi & Wohl, 2012). Beaver activity can reduce downstream hydrological connec-
tivity, and conversely increase lateral connectivity, forcing water sideways into neighboring riparian land, inundating
floodplains, and creating diverse wetland environments (Macfarlane et al., 2015), while also contributing to soil and
groundwater recharge (Westbrook et al., 2006).
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Multiple studies have identified beaver dam sequences and wetlands as a cause of flow attenuation—so-called
“slowing the flow” (Green & Westbrook, 2009; Gurnell, 1998; Pollock et al., 2007). This impact has been attributed to
the increase in water storage in beaver pond sequences, relative to undammed reaches (Westbrook et al., 2020), and

FIGURE 2 The influence of beaver activity on the geomorphology of incised streams: (a) low-flow damming of confined channels with

high-flow blowouts causes overtopping, bank widening, and excavation of the channel bed; (b) sediment becomes more mobile and the

channel reconfigures with vegetation establishment; (c) channel widening reduces high-flow peak stream power and this provides suitable

conditions for wider, more stable dams; (d) sediment accumulates in ponds and raises the height of the channel with dams overtopped and

small blow-outs occurring where dams are abandoned; (e) process repeats until dams are rebuilt, channel widens and the water table rises

sufficiently to reconnect river channel to the floodplain; and (f) high heterogeneity occurs with vegetation and sediment communities

establishing themselves, multi-threaded channels and ponds increase reserves of surface water and dams and dead wood reduce flows and

provide wetland habitats. (Reproduced with permission from Pollock et al., 2014)
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increased hydrological roughness from the creation of dams and complex wetlands (Puttock et al., 2017), resulting in
water being trapped or slowed as it moves through, over and around beaver dams. For example, Green and
Westbrook (2009) found the removal of a sequence of beaver dams resulted in an 81% increase in flow velocity. The
slow movement of water in beaver impacted sites is attributed to two main mechanisms: (a) increased water storage
and (b) stream discontinuity and reduced longitudinal hydrological connectivity (Puttock et al., 2017). The increase in
storage provided by beaver ponds and wetlands (Grygoruk & Nowak, 2014; Gurnell, 1998; Woo & Waddington, 1990)
lengthens water retention times and reduces the velocity of the water. This in turn can increase the duration of the ris-
ing limb of the flood hydrograph which can reduce the peak discharge of floods (Burns & McDonnell, 1998; Green &
Westbrook, 2009; Nyssen, Pontzeele, & Billi, 2011). Additionally, water stored in beaver ponds is released slowly as the
porous dams gently leak both during and following rainfall, elevating stream base flows even during prolonged dry
periods (Majerova, Neilson, Schmadel, Wheaton, & Snow, 2015; Puttock et al., 2017; Woo & Waddington, 1990),
increasing environmental resilience to risks including drought and fire (Fairfax & Whittle, 2020).

Water levels in ponds vary significantly as a result of meteorological conditions both over long (i.e., seasonal) and
short (i.e., inter-event) timeframes (Puttock et al., 2017; Westbrook et al., 2020). Consequently, seasonal variations in
water storage have been observed (see Majerova et al., 2015 for example). It might be expected that the attenuating
impact of flow due to storage will be less during wet periods. However, it has been proven that beaver activity still
attenuates flow during large events. For example, see Nyssen et al. (2011) who conducted one of the few in-channel
hydrological studies of Eurasian beaver; finding that flow attenuation was in fact greatest during largest events. In
2013, Westbrook et al. (2020) monitored the largest recorded flood in the Canadian Rocky Mountains west of Calgary,
Alberta, challenging the commonly held assumption that dams fail during large floods (the majority fully or partially
persisted) and showing that water storage offered by beaver dams (even failed ones) delayed downstream flood peaks.
Therefore, it has been argued that the observed discontinuity or reduced downstream hydrological connectivity
resulting from beaver dam-building activity—also shown by Butler and Malanson (2005), is a key reason for the flow
attenuation impact persisting even for larger events during wetter periods (Puttock et al., 2017).

Of course, beaver dam construction is highly variable and depends on the existing habitat, building material avail-
ability, and channel characteristics (Collen & Gibson, 2000; Woo & Waddington, 1990). Woo and Waddington (1990)
identified multiple ways in which dam structure will influence flow pathways and that streamflow can overtop or fun-
nel through gaps in the dams, leak from the bottom of the dams or seep through the entire structure. While the impact
of dam structure upon connectivity and therefore, flow velocity will differ (Hering et al., 2001; Woo &
Waddington, 1990), all dams will increase channel/hydraulic roughness and therefore, deliver some flow attenuation
effect, which can be most significant when a suite of dams in close proximity are constructed (for example see Puttock
et al., 2017 case study). Thus, in addition to dam structural variations, it is important to note that the number of dams
and their density will strongly influence any observed differences in hydrological function. Existing work has also dis-
cussed the importance of the number of dams in a reach, with beaver dams having the greatest impact on hydrology
when they occur in a series (Beedle, 1991; Gurnell, 1998). Similarly, sequences of (non-beaver) debris dams in third
order, Northern Indiana (USA) streams were found to increase the retention time of water by a factor of 1.5–1.7
(Ehrman & Lamberti, 1992). Ponds located in series provide both greater storage and greater roughness, resulting in a
greater reduction in flow velocities as shown by Green and Westbrook (2009). In another study, pond sequences have
been shown to reduce the peak flows of 2-year return floods by 14% whereas individual dams reduced flood peaks of
similar events by only 5.3% (Beedle, 1991).

There are very few hydrological modeling studies into the impacts of beaver dam sequences upon flow regimes. In
European landscapes, this perhaps reflects the fact that until recently there has been both a dearth of beaver dams
themselves and also a lack of empirical understanding of the impact on hydrological functioning. In a notable excep-
tion, Neumayer, Teschemacher, Schloemer, Zahner, and Rieger (2020) undertook hydraulic modeling of beaver dam
sequences and evaluated their impacts during flood events. Utilizing surveys of beaver dam cascades in Bavaria and 2D
hydraulic modeling, Neumayer et al. (2020) predicted that during small flood events, beaver dams can deliver signifi-
cant impacts upon peak flows (up to 13% reductions) and lag/translation times (up to 2.75 hr). But, Neumayer
et al. (2020) also predicted that during larger floods (return period ≥2 years), the impact upon peak flows of a single
dam sequence may be smaller (ca. 2%) and perhaps negligible at the catchment outlet. However, Neumayer et al. (2020)
modeled the impacts of beaver dams on channels larger than those that other research has shown might support the
greatest densities of dams (i.e., Graham et al., 2020 show that dams rarely persist on >fifth-order streams) and thus it is
suggested that further modeling work is required into the downstream hydrological impacts of small streams with high
dam densities. In addition, further research is required to understand what the cumulative catchment outlet effects
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might be if beavers return to being widespread and catchments contain multiple dam sequences (i.e., hundreds of
dams) in all headwater streams.

2.2.2 | Summary of hydrological impacts

• Beavers can reduce longitudinal (downstream) connectivity, while simultaneously increasing lateral connectivity,
pushing water sideways.

• Beavers can increase surface water storage within ponds and canals, while also elevating the water table and contrib-
uting to groundwater recharge.

• Beaver dam sequences and wetlands can attenuate flow during both high and low flow periods.

2.2.3 | Gaps in understanding: Hydrology

• A greater mechanistic understanding of the hydrological impacts of beaver dams and also critically sequences of bea-
ver dams across scales and land uses to inform hydrological modeling, management, and policy decision making.

• Conditions of dam failure and consequences.
• Greater understanding of beaver landscape engineering upon low flow conditions and wetland maintenance during

drought.

2.3 | Impacts of beaver upon water quality

The altered flow regimes and water storage capacity discussed in Section 2.2 can also modify sediment regimes and
nutrient and chemical cycling in freshwater systems. As a consequence of reduced downstream connectivity and a
change from lotic to lentic systems, beaver activity is believed to alter both local and downstream sediment dynamics,
and water quality via both abiotic and biotic processes (Cirmo & Driscoll, 1996; Johnston, Pinay, Arens, &
Naiman, 1995). It has been argued that two key mechanisms affect the difference in sediment dynamics of water quality
observed in beaver systems: (a) slowing of flow resulting in the physical deposition of sediment (reviewed in Section 2.1)
and associated nutrients/chemicals, (b) an increase in both ponded water and a local rise in water tables, results in an
overall increase in wetness altering the biogeochemical cycling of nutrients (Puttock et al., 2017).

2.3.1 | Impacts on nutrient cycling

When beaver dams inhibit the transport of fine sediments, large volumes of organic and inorganic compounds become
stored within beaver ponds (Rosell et al., 2005), including; nitrogen, phosphorus, and particulate (bound) carbon
(Lizarralde et al., 1996; Naiman, Pinay, Johnston, & Pastor, 1994). This change increases the volume of anoxic sedi-
ments and provides organic material to aid microbial respiration. Nutrients are temporarily immobilized in pond sedi-
ments and taken up by aquatic plants, periphyton, and phytoplankton. Increases in plant-available nitrogen,
phosphorus, carbon, and increased light availability (due to canopy reduction) favor the growth of instream and ripar-
ian vegetation, thus further immobilizing nutrients within plant biomass that re-establishes local nutrient cycles (Rosell
et al., 2005). In addition to the impacts of large volumes of sediment, the reduction in free-flowing water and increased
decomposition has been shown to increase anaerobic conditions in both pond surface water and saturated soils (Ecke
et al., 2017; Rozhkova-Timina, Popkov, Mitchell, & Kirpotin, 2018).

Lazar et al. (2015) show that beaver ponds have a denitrification impact while results from Puttock et al. (2017)
showed Total Oxidized Nitrogen (TON) and Phosphate (PO4-P) to be significantly lower in waters leaving a beaver
impacted site compared with water quality entering. These reductions manifest both in terms of concentrations and
loads of nutrients, suggesting that beaver activity at the site created conditions for the removal of diffuse pollutants
from farmland upstream. Correll, Jordan, and Weller (2000) found that prior to dam construction, TON concentrations
were significantly correlated with river discharge but after dam construction, no significant relationship was observed,
although there was a correlation between discharge and nitrate (NO3-N). Similarly, Maret, Parker, and Fannin (1987)
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identified reductions in Total Kjeldahl Nitrogen (TKN) downstream of beaver dams during high flows. It has also been
shown that beaver ponds are particularly effective at NO3-N retention (K. J. Devito, Dillon, & Lazerte, 1989). It is
suggested, therefore, that in agriculturally dominated catchments where diffuse pollution rates are high, beaver ponds
may be effective tools to manage N-related diffuse pollution problems from intensive agriculture upstream (Lazar
et al., 2015).

Puttock et al. (2017) show that beaver ponds can also act as sinks for phosphorus associated with sediments, while
Maret et al. (1987) identified that suspended sediment was the primary source of phosphorus found leaving a beaver
pond; therefore, during conditions when more sediment is retained behind the dam than is released, total phosphorus
retention will increase. In a study of a beaver impacted and non-beaver impacted catchment (Dillon, Molot, &
Scheider, 1991), found total phosphorus export was higher in the non-impacted catchment suggesting that phosphorus
was being stored somewhere within the catchment—most probably in the beaver ponds. Lizarralde et al. (1996) also
reported that while phosphorus concentrations were significantly higher in riffle sediments, due to extensive wetland
creation, total storage was highest in Patagonian beaver ponds. Previous studies have focused primarily on the relation-
ship between discharge and phosphorus concentrations and yields leaving ponds, with inconclusive results. Devito
et al. (1989) reported a strong positive correlation between phosphorus loads and stream discharge. However, Maret
et al. (1987) report a negative correlation between phosphorus concentrations and discharge and Correll et al. (2000)
report no correlation between nutrient flushing and stream discharge following dam construction. Climatic and sea-
sonal changes (Devito & Dillon, 1993; Klotz, 2007) and organic matter availability (Klotz, 2007, 2013) have been shown
to affect in-pond phosphorus-dynamics. With regard to downstream impact, the key consensus, that is supported by the
correlation between suspended sediment and phosphate concentrations observed in Puttock et al. (2017) is that beaver
ponds are effective at retaining phosphorus associated with high sediment loads (Devito et al., 1989; Maret et al., 1987).

Ecke et al. (2017) suggest age dependency as a factor in nitrogen and phosphorus dynamics, with older, more solid
dams increasing retention compared to younger more leaky dams. In a review of beaver impacts upon nitrogen and
phosphorus content in ponds and downstream, Rozhkova-Timina et al. (2018) cite contradictory information and study
results as showing there is a strong contextual dependence and it is clear that further research into the controlling
mechanisms of nutrient retention is required.

In contrast to the trends observed for nitrogen and phosphorus, multiple studies, that is, Puttock et al. (2017) and
Cazzolla Gatti et al. (2018) found concentrations and loads of Dissolved Organic Carbon (DOC) increase due to beaver
activity. This increase is attributed to enhanced sediment and nutrient storage in addition to the overall increase in
wetland extent creating an environment rich in organic matter, as previously shown by Vecherskiy, Korotaeva, Kostina,
Dobrovol'skaya, and Umarov (2011). Similarly, Law, McLean, and Willby (2016), using color as a proxy for DOC,
observed increased concentrations below a series of beaver dams. Dams trap sediment-bound particulate carbon mean-
ing that ponds can act as net stores of carbon (D. Correll et al., 2000; Lizarralde et al., 1996; Naiman, Melillo, &
Hobbie, 1986). However, as a consequence of this overall increase in carbon availability, significant exports of DOC
have been observed either downstream (D. Correll et al., 2000; Naiman et al., 1994) or in comparison with non-beaver
impacted catchments (Błȩdzki, Bubier, Moulton, & Kyker-Snowman, 2011). Several authors have speculated that the
cause of this DOC release relates to (a) incomplete decomposition processes making DOC more available for loss
(Cirmo & Driscoll, 1996); (b) enhanced production during primary productivity; (c) a product of enhanced microbial
respiration (D. Correll et al., 2000); and (d) retention of particulate organic carbon and litter entering the site and subse-
quent decomposition (Law et al., 2016). Based upon research in western Siberia, Cazzolla Gatti et al. (2018) argue that
beaver activity simultaneously increases nutrient cycling and DOC availability at the same time as increasing carbon
sequestration as carbon is accumulated in sediment and removed from the short-term carbon cycle.

pH has been shown to be a first-order control on DOC production and transport in other wetlands (Clark, Lane,
Chapman, & Adamson, 2007; Grand-Clement et al., 2014). However, Cirmo and Driscoll (1996) found that a beaver
impacted catchment contained higher levels of DOC both before and after CaCO3 treatment (to reduce acidity) when
compared with a non-impacted catchment, suggesting that pH plays a limited role in the production of DOC in beaver
ponds. Puttock et al. (2017) showed pH to be marginally more alkaline in water leaving the site, which is in agreement
with other studies showing more acidic waters in beaver ponds than immediately downstream (Cirmo & Driscoll, 1993;
Cirmo & Driscoll, 1996; Margolis, Castro, & Raesly, 2001). However, whether these changes in pH were of a large
enough magnitude to alter within site biogeochemical cycling is as yet unclear.

Increased water availability in beaver systems, in addition to a change in chemistry associated with a transformation
from lotic to lentic waters, has also been ascribed by multiple studies to control increased leaching of heavy metals from
soils and increased concentrations in waters downstream. Releases from pond or increases in downstream
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concentrations of calcium, iron, and magnesium (for example) were observed by Naiman et al. (1994) and C. A. John-
ston et al. (1995), while Levanoni et al. (2015) and Margolis et al. (2001) also observed downstream increases in manga-
nese and observed increasing methylmercury concentrations both downstream of beaver sites and in
macroinvertebrates within beaver sites. In a meta-analysis review, Ecke et al. (2017) found young ponds to be a source
for methylmercury in water, while old ponds were not, again highlighting that beaver systems are complex and
dynamic with a high degree of context-dependence required to understand their impacts upon water quality.

2.3.2 | Summary of water quality impacts

• Beaver wetlands and dam sequences can change parts of freshwater ecosystems from lotic to lentic systems impacting
upon sediment regimes and biogeochemical cycling.

• By slowing the flow of water, suspended sediment and associated nutrients are deposited, with ponds shown to be
large sediment and nutrient stores.

• Increased water availability, raised water tables, and increased interaction with aquatic and riparian vegetation have
all been shown to impact positively upon biogeochemical cycling and nutrient fluxes.

2.3.3 | Water quality gaps in understanding

• Sediment and nutrient dynamics within dam sequences as opposed to individual dams and ponds.
• A greater understanding is required of the contributing source of sediment and nutrients to beaver ponds.
• How long-term beaver dam sequences and wetland dynamics contribute to downstream water quality.
• How the impoundment of water, sediments, and associated nutrients in ponds affects biogeochemical cycling and

resulting transfers of nutrients in both gaseous and dissolved forms to understand the contribution of beavers to over-
all nutrient budgets in both the carbon and nitrogen cycles.

3 | BEAVER IMPACTS UPON LIFE—CONTEMPORARY UNDERSTANDING

3.1 | Impacts of beaver upon aquatic ecology

Enhancement of natural processes, floodplain inundation, lateral connectivity, and structural heterogeneity in beaver-
impacted environments creates a diverse mosaic of habitats. Such habitats are underpinned by greater provision of food,
refuge, and colonizable niches, which form the cornerstone of species-rich and more biodiverse freshwater wetland eco-
systems (Brazier et al., 2020; Campbell-Palmer et al., 2016; Gaywood et al., 2015; Gurnell, 1998; Rosell et al., 2005;
Stringer & Gaywood, 2016). Readers are directed to three reviews on this topic: Stringer and Gaywood (2016), which
provides a comprehensive overview of the impacts of beaver on multiple species, Dalbeck et al. (2020) which considers
the impacts of beavers on amphibians in temperate European environments and Kemp, Worthington, Langford, Tree,
and Gaywood (2012) which provides a valuable meta-analysis of the impacts of beaver on fish. This section builds on
these reviews to summarize the findings of research into the impacts of beaver activity on aquatic plants, invertebrates,
and fish. We focus on these groups as they are widely considered to be strong indicator species of freshwater health and
function (Herman & Nejadhashemi, 2015; Law et al., 2019; Turley et al., 2016).

3.1.1 | Aquatic vegetation (macrophytes)

Beavers affect aquatic vegetation through direct and indirect mechanisms over a range of spatial and temporal scales
(Rosell et al., 2005). Natural disturbances, including; herbivory, food caching, tree-felling (Campbell-Palmer et al., 2016;
Harrington, Feber, Raynor, & Macdonald, 2015), and/or dam-induced extension of wetland area (Gurnell, 1998; Puttock
et al., 2017) can aid macrophyte recruitment (Levine & Meyer, 2019), regenerate riparian areas (Jones, Gilvear, Willby, &
Gaywood, 2009), and enhance plant biodiversity from the local to the landscape scale (Law, Bunnefeld, & Willby, 2014;
Law, Jones, & Willby, 2014; Law, Levanoni, Foster, Ecke, & Willby, 2019; Willby et al., 2018). Canopy-opening and
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floodplain inundation creates wetland areas with reduced shading (Donkor & Fryxell, 2000; Johnston & Naiman, 1990),
providing opportunities for shade-intolerant, opportunistic, and wetland plant species (Law et al., 2016, 2017; Law,
Levanoni, et al., 2019; Marshall, Hobbs, & Cooper, 2013). Early successional shifts in newly created wetted zones pro-
mote emergent vegetation (Ray, Rebertus, & Ray, 2001), while transitional edges form around pond margins, character-
ized by rich, diverse, and structurally complex plant communities (McMaster & McMaster, 2001).

Over time, beaver wetland creation, maturation, and abandonment, can result in the siltation of ponds, creating
novel habitats in marshy beaver meadows characterized by spatial variability in moisture-regimes which drives higher
plant species richness (Polvi & Wohl, 2012; Ray et al., 2001; Wright, Flecker, & Jones, 2003; Wright, Jones, &
Flecker, 2002). As beaver meadows mature, terrestrial succession often occurs, leading to herbaceous encroachment,
typically comprising grasses, shrubs, and sedges, with studies showing evidence of an eventual return to open, forested,
stream environments (Johnston, 2017; Little, Guntenspergen, & Allen, 2012; McMaster & McMaster, 2001; Naiman,
Johnston, & Kelley, 1988; Pollock et al., 1995; Ray et al., 2001).

3.1.2 | Invertebrates and amphibians

Beaver increase the heterogeneity of stream depth, flow velocity, and benthic habitats such as silty substrates, woody
material (Clifford, Wiley, & Casey, 1993; France, 1997; Rolauffs, Hering, & Lohse, 2001), and both submerged and
emergent vegetation, which separately support unique invertebrate species and assemblages (Benke, Ward, &
Richardson, 1999; Bush & Wissinger, 2016; Law, Levanoni, et al., 2019; Wissinger & Gallagher, 1999). Beaver ponds
support more lentic species (Collen & Gibson, 2000; Margolis et al., 2001; Rosell et al., 2005) and typically demonstrate
increased invertebrate abundance (Czerniawski & Sługocki, 2018; Osipov, Bashinskiy, & Podshivalina, 2018; Strzelec,
Białek, & Spyra, 2018; Willby et al., 2018), biomass (Osipov et al., 2018) and/or density (McDowell & Naiman, 1986).
Beaver ponds may harbor unique assemblages, dominated by collector-gatherers, shredders, and/or predators (Law
et al., 2016; McDowell & Naiman, 1986; Robinson, Schweizer, Larsen, Schubert, & Siebers, 2020; Strzelec et al., 2018).
However, diversity may be reduced due to the typically homogeneous benthic habitat within ponds resulting from
increased fine sediment deposition (Descloux, Datry, & Usseglio-Polatera, 2014; Pulley, Goubet, Moser, Browning, &
Collins, 2019). At broader scales, varying successional stages in beaver wetlands, as well as longitudinal variability in
habitat type along with beaver dam-pond sequences (e.g., Margolis et al., 2001), increases the taxonomic, trophic,
and/or β-diversity of aquatic invertebrate communities compared to environments lacking beaver modification. This is
primarily due to the heterogeneity of habitat benefiting a range of both lotic and lentic species (Bush, Stenert,
Maltchik, & Batzer, 2019; Law et al., 2016; Pollock et al., 2017; Willby et al., 2018). Furthermore, the storage of sediment
and nutrients within beaver ponds improves water quality (Puttock et al., 2017) downstream and therefore enhances
habitat for pollution-sensitive species (Rosell et al., 2005; Strzelec et al., 2018).

The gradual release of water from beaver ponds maintains flows during dry periods (Section 2.1), thereby increasing
invertebrate resilience to drought by providing refuge pools and greater post-drought recolonization potential
(Wild, 2011; Wissinger & Gallagher, 1999). High-head dams promote high velocity and turbulent water over, through,
or around dams in side-channels, creating habitat suitable for lotic species, which can otherwise be rare in low-gradient
stream reaches (Clifford et al., 1993; Law et al., 2016). In addition, cold hyporheic upwelling and lower stream tempera-
tures downstream of high-head dams, and at depth in beaver ponds, has been shown to benefit the reproductive success
of invertebrate species such as mayflies (Fuller & Peckarsky, 2011).

Beaver-engineered woody structures, such as dams and lodges, offer key invertebrate habitats resulting in greater
abundance (France, 1997), biomass, density (McDowell & Naiman, 1986; Rolauffs et al., 2001), productivity, richness
(France, 1997; Rolauffs et al., 2001), and diversity (Benke, Van Arsdall, Gillespie, & Parrish, 1984) compared to beaver
ponds and free-flowing streams. Direct benefits for invertebrates arise from physical complexity, such as the interstices
of dams, lodges, bank burrows, and canals, which offer spaces suitable for novel microhabitats (Hood & Larson, 2015;
Willby et al., 2018), refuge from predators (Benke & Wallace, 2003), egg-laying (oviposition) sites (Gaywood
et al., 2015), and emergent metamorphosis (Wallace, Grubaugh, & Whiles, 1993). These woody structures also provide
attachment sites for filter-feeding organisms and foraging resources for species that feed on woody material (xylopha-
gous) and those that feed on the epixylic biofilms which grow on woody surfaces (Godfrey, 2003; Hering et al., 2001;
Strzelec et al., 2018). For example, deadwood-eating (saproxylic) beetles are known to occupy beaver-impacted habitats
(Horák, Vávrová, & Chobot, 2010; Stringer & Gaywood, 2016). In addition, the retention of organic particulate matter
in beaver ponds enhances foraging opportunities for aquatic invertebrates, particularly gatherers and shredders
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(Johnston, 2014; Law et al., 2016; Wohl, 2013). Organic drift can also bring wider benefits within catchments, increas-
ing the abundance and/or richness of invertebrates in areas both downstream (Redin & Sjöberg, 2013) and upstream
(Rolauffs et al., 2001) of beaver-modified sites.

Dalbeck et al. (2020) conclude that beavers and their habitat creating activities can be pivotal determinants of
amphibian species richness, particularly in the headwater streams. The creation of lentic zones in beaver modified
wetlands is cited as an essential breeding habitat for amphibian species, but can also be important for entire life his-
tory requirements (Cunningham, Calhoun, & Glanz, 2007), with beaver ponds offering sites where reliable spawning
and early metamorphosis can take place, in instances comprising exclusive ovipositional sites within wider wetlands
(Dalbeck, Janssen, & Luise Völsgen, 2014). Beaver modifications, which increase lentic-rich habitat heterogeneity
and/or raise light levels and solar radiation, warming patches of water, in turn, support healthier amphibian assem-
blages. Such improvements manifest via greater species-richness (Cunningham et al., 2007), diversity
(Bashinskiy, 2014; Cunningham et al., 2007; Dalbeck, Lüscher, & Ohlhoff, 2007), colonization rates and abundance
(Anderson, Paszkowski, & Hood, 2015; Dalbeck et al., 2014; Stevens, Paszkowski, & Foote, 2007), older-pond density
(Stevens et al., 2007), size and productivity compared to unmodified habitats, with connectivity between ponds and
through beaver canals reducing distances between breeding and foraging sites (Anderson et al., 2015). Woody com-
plexes which form lodges and dams may also provide valuable habitat which amphibians can use for larval food pro-
vision and development (Tockner, Klaus, Baumgartner, & Ward, 2006), potential overwintering hibernation sites
(Stevens et al., 2007) or cover from predators (Tockner et al., 2006), with cover options offering predatorial and larval
protection by areas of shallow emergent-vegetated pond margins (Dalbeck et al., 2007; Vehkaoja & Nummi, 2015).
Conversely, lotic obligate species may be negatively affected by beaver activity (Stringer & Gaywood, 2016), although
studies have demonstrated the persistence and high abundance of stream-dependent species on the unimpounded
reaches of beaver modified streams (e.g., Cunningham et al., 2007).

3.1.3 | Fish

Beavers and fish have cohabited for millennia (Malison & Halley, 2020) and have previously been shown to coexist pos-
itively (Kemp et al., 2012). As such, it is no surprise that beaver-induced habitat changes, particularly increased hetero-
geneity, can benefit fish populations (Figure 3). Documented benefits include increased: growth rates (Malison, Eby, &
Stanford, 2015; Pollock, Heim, & Werner, 2003; Rosell & Parker, 1996), survival (Bouwes et al., 2016), biomass
(Bashinskiy & Osipov, 2016), density (Bouwes et al., 2016; Wathen et al., 2019), productivity (Osipov et al., 2018; Pollock
et al., 2003; Pollock, Pess, Beechie, & Montgomery, 2004), species richness (Snodgrass & Meffe, 1998), and diversity
(Smith & Mather, 2013). Additional benefits to fish include the creation of juvenile rearing habitat (Johnson &
Weiss, 2006; Leidholt-Bruner, Hibbs, & McComb, 1992; Pollock et al., 2004), overwintering habitat (Chisholm,
Hubert, & Wesche, 1987; Cunjak, 1996; Malison et al., 2015), migratory respite (Virbickas, Stakėnas, &
Steponėnas, 2015), enhanced spawning habitat (Bylak, Kukuła, & Mitka, 2014), greater invertebrate food availability
(Rolauffs et al., 2001), and refugia from low-flows (Hägglund & Sjöberg, 1999), high discharge (Bouwes et al., 2016),
temperature extremes (Wathen et al., 2019), and predation (Bylak et al., 2014). It is for these reasons, that recent
approaches in the US have used beaver reintroduction to enhance habitat in support of salmonid reintroduction and/or
conservation (Bouwes et al., 2016).

Due to the wide range of changes that beavers bring about, the benefits listed above will likely manifest for a variety
of freshwater fish species through a wider understanding of these impacts is required as most research has focused
upon interactions between beaver and salmonid species. Salmonids, particularly anadromous species (migrating from
the sea to spawn in rivers) hold significant financial, cultural, and recreational value from a fisheries perspective
(Butler, Radford, Riddington, & Laughton, 2009). Unfortunately, for a variety of reasons, which have nothing to do with
beavers, populations of salmonid populations in Europe are in decline, and the two most abundant native salmonids,
the Atlantic salmon (Salmo solar) and the Brown/Sea trout (S. trutta) are under threat (Forseth et al., 2017). Research
in the US has largely shown that beaver reintroduction aids the recovery of salmonid populations (e.g., Bouwes
et al., 2016; Wathen et al., 2019); however, despite the long-term coexistence of these species, the expansion and
reintroduction of beavers across European landscapes, now substantially altered due to anthropogenic activity, has
raised concerns regarding the potential impact that beaver activity may have on salmonid species (Malison &
Halley, 2020).
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Two recent studies have investigated the impacts of beaver on salmonid habitat and populations in upland streams
(Bylak & Kukuła, 2018; Malison & Halley, 2020). Both of these studies report increased habitat patchiness and heteroge-
neity in river systems that are typically dominated by fast-flowing habitat. Neither study found evidence to suggest that
beaver dams prevented fish movement either upstream or downstream. However, Malison and Halley (2020) did find
that the presence of beaver dams affected the frequency of movement between stream reaches, suggesting that either
beaver dams may act to restrict daily home ranges of salmonids, or the increased local habitat complexity around bea-
ver dams reduces the need for salmonids to travel greater distances. A conflicting finding of these studies is that of the
use of ponds by salmonids. In agreement with numerous studies that found beaver ponds to provide valuable rearing
habitat (Malison, Lorang, Whited, & Stanford, 2014; Weber et al., 2017) and habitat niches for different stages of salmo-
nid life cycles (Bouwes et al., 2016; Wathen et al., 2019), Bylak and Kukuła (2018) observed that brown trout used differ-
ent beaver-created habitats throughout their life stages. However, Malison and Halley (2020) reported that they did not
observe beaver ponds being used as salmon rearing habitat. Both studies report either no significant effect of beaver on
fish populations (Malison & Halley, 2020) or a positive impact on the community composition and patch dynamics
(Bylak & Kukuła, 2018).

Virbickas et al. (2015) studied the impacts of beaver on two lowland Lithuanian streams. Unlike, the studies from
upland streams, Virbickas et al. (2015) found evidence to suggest that beaver dam sequences do restrict upstream move-
ment of salmonids with reaches below and between ponds being used but no salmonids or redds (spawning sites) being
observed upstream of beaver dam complexes. While the presence of beavers did enhance community evenness
upstream of dams, this effect was attributed to the exclusion of salmonids, which typically dominated fish communities
downstream of dams.

The scale of such studies should be considered carefully in the context of mobile and dynamic species of fish.
Bylak and Kukuła (2018) present data from the longest period of monitoring in Europe. They show that the response

FIGURE 3 Flow Diagram of expected change following beaver return. (Reproduced with permission from Bouwes et al., 2016)
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of fish to beaver activity enhances metacommunity resilience but consequently localized fish communities may alter
for short periods of time. However, in these upland systems, high flows capable of “blowing out” dams are more fre-
quent (Macfarlane et al., 2017) thus allowing unimpeded fish movement during these periods. In lowland systems,
such as those investigated by Virbickas et al. (2015) the increased hydrological stability may result in a longer lasting
separation of fish communities up and downstream of beaver dams. In low gradient systems, where spawning habi-
tat is located solely in the upper reaches of a catchment, the presence of dams could potentially limit access to these
reaches, affecting spawning success or resulting in the formation of new spawning habitat, such as the clean gravel
bars which commonly form at the tail end of beaver ponds and immediately downstream of dams (Bouwes
et al., 2016).

Further research on the impacts of fish across varied European landscapes is required. These studies should seek to
understand the effect of beaver on fish communities at the catchment scale. It is well established that fish can navigate
beaver dams (Bouwes et al., 2016; Bylak & Kukuła, 2018; Malison & Halley, 2020; Virbickas et al., 2015). However, a
greater understanding is required to quantify the importance of any reduced longitudinal movement of fish alongside
the known benefits including an increase in food availability and greater habitat diversity.

3.1.4 | Aquatic ecology summary

• Beaver activity extending wetland areas aids aquatic plant recruitment, abundance, and species diversity.
• Nutrient-rich beaver meadows result in mature beaver managed landscapes, contributing diverse plant life, and

increasing patchiness in otherwise homogeneous (especially intensively farmed) landscapes.
• Heterogeneity of beaver habitat leads to greater diversity of invertebrates, benefitting both lotic, and lentic species.
• Slow release of water from beaver ponds elevates baseflow downstream supporting greater aquatic life, improving

resilience especially in times of drought.
• A multitude of benefits accrue for fish due to beaver activity such as increased habitat heterogeneity and food

availability.
• It is established that salmonid species can navigate beaver dams, though there is evidence that the presence of dams

does alter the way they move within river networks. The impact of dams on salmonid movement is highly dependent
on location and upstream movement may be reduced in low gradient, low energy systems.

3.1.5 | Aquatic ecology gaps in understanding

• Community level, catchment scale understanding of beaver interactions with fish of all species is required to deter-
mine whether the changes seen—returning freshwaters to something akin to pre-anthropocene conditions, are over-
all positive (as current literature suggests) or negative and thus requiring management interventions.

• The narrow, riparian landscapes of many European countries, wherein intensive agriculture encroaches on freshwa-
ters, need further research into the impacts of beavers on both existing vegetation and that which may emerge if
more space for water and beavers is made.

• Changes to the ecological status of freshwaters inhabited by beavers are inevitable and research to understand the
impact on goals of the Water Framework Directive is needed, to contextualize what is meant by “good” ecological
status now that beavers are present.

3.2 | Human–beaver interactions

The potential benefits and impacts of beaver reintroduction (outlined above for the environment) can also manifest for
humans. Notably, flow attenuation resulting from beaver damming will be likely to reduce potential for flooding of
properties downstream. There is a further socioeconomic benefit not as yet explored in this article; as beavers bring
more wildlife to ecosystems, beaver lands can become a focus of wildlife tourism, where humans interact with wild ani-
mals or with animals in enclosures (Higginbottom, 2004; Moorhouse, D'Cruze, & Macdonald, 2017). Wildlife tourism is
a growing global trend which can engage people with nature, with their experiences often contributing toward local
communities, providing benefits for mental health and well-being, and incentivizing nature conservation behaviors
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(Curtin, 2009; Curtin & Kragh, 2014; Higginbottom, 2004; Lackey et al., 2019; Newsome, Rodger, Pearce, & Chan, 2019;
Skibins, Powell, & Hallo, 2013).

Much wildlife tourism is centered upon “charismatic species” (Curtin, 2010; Skibins et al., 2013), but some are moti-
vated by the intention to support wider biodiversity rather than charismatic species alone (Hausmann, Slotow, Fraser, &
Minin, 2017). Beavers are often considered charismatic and, as a keystone species, are associated with biodiverse land-
scapes, which they create and maintain. Thus, they exhibit both those traits that motivate wildlife tourism. Beaver tour-
ism activities that currently exist in Europe include “beaver safaris”, guided tours of beaver-modified landscapes, and
information centers (Campbell, Dutton, & Hughes, 2007; Halley et al., 2012; Rosell & Pedersen, 1999). Beaver tourism
and associated support for local communities is therefore often cited as one of the reasons for reintroduction where bea-
vers are not yet present (Campbell et al., 2007; Gaywood, 2018; Gurnell et al., 2009; Jones, Halley, Gow, Branscombe, &
Aykroyd, 2012; Moran & Lewis, 2014).

There are, however, a number of challenges experienced where beaver and humans interact. In Europe, these are
observed mostly where beaver impacts interact with human interests within the riparian zone (Campbell-Palmer
et al., 2016; Halley et al., 2012; Heidecke & Klenner-Fringes, 1992), particularly in upper and marginal reaches of water-
courses where beaver will undertake the largest-scale habitat alteration (Graham et al., 2020; Halley et al., 2012). For
example, where water is stored behind beaver dams, it may inundate land owned by humans which could lead to a
financial cost, especially when associated with agriculture or forestry (Campbell-Palmer et al., 2016; Gaywood
et al., 2015; Morzillo & Needham, 2015; Parker et al., 1999). Other notable impacts can include beaver burrow collapse
and bank erosion in agricultural land (Campbell-Palmer et al., 2016; Gurnell, 1998), beaver grazing on arable crops
(Campbell-Palmer et al., 2016, p.; McKinstry & Anderson, 1999), or the felling of particular trees of human importance
(Campbell-Palmer et al., 2016; Campbell-Palmer, Schwab, & Girling, 2015). Perhaps not surprisingly, beaver are per-
ceived more negatively by people where these conflicts occur (Enck et al., 1992; Jonker et al., 2010; McKinstry & Ander-
son, 1999; Payne & Peterson, 1986).

Practical management interventions exist that can be employed to address these factors, including dam removal,
bank stability management, flow device installation (to lower water levels), tree protection, restoration of riparian zone
as management, supported further by compensation or positive incentive payments (Campbell-Palmer et al., 2015;
Campbell-Palmer et al., 2016; Morzillo & Needham, 2015; Pollock et al., 2017). To reduce the potential for further con-
flicts, however, particularly those that occur between people over species management (Marshall, White, &
Fischer, 2007; Redpath, Bhatia, & Young, 2015), it is recognized that engaging with affected individuals and sharing in
the decision-making processes for management of beaver is vital (Coz & Young, 2020; Decker et al., 2015, 2016;
Redpath et al., 2015).

A recent study of local peoples' attitudes toward beaver in Romania and Hungary demonstrated that beaver was
often viewed negatively when related to provisioning ecosystem services but positively regarding regulatory or cultural
services. As such the study called for recognition of this complexity in perceptions to minimize conflicts, through
“reciprocal learning” between conservationists and locals in adaptive management (Ulicsni, Babai, Juhász, Molnár, &
Biró, 2020). For beaver, there are a number of management frameworks which seek to engage with affected parties
across Europe in a variety of ways, for example: in Bavaria (Germany), regional authorities employ two beaver man-
agers to oversee a network of volunteer beaver consultants throughout the region (Pillai & Heptinstall, 2013; Schwab &
Schmidbauer, 2003); in the Netherlands, the government monitors the beaver population and provides management
advice to landowners (Pillai & Heptinstall, 2013); in France, the state authorities provide an advisory service at a catch-
ment scale (Campbell-Palmer et al., 2015; Campbell-Palmer et al., 2016; River Otter Beaver Trial, 2019). However,
although engagement is a key component of management strategies, there are to date, few European studies describing
attitudes towards beaver (Ulicsni et al., 2020).

The case is different in Great Britain where beaver is currently being reintroduced at a politically devolved level
(with the reintroduction status at varying stages throughout the nations) as there have been a number of studies of atti-
tudes towards the species. This may be because an understanding of social factors is a requirement of reintroduction
according to the guidelines set by the International Union for the Conservation of Nature (IUCN & SSC, 2013); these
guidelines were published in 2013 after many of the reintroduction projects in mainland Europe (Halley et al., 2012),
and of course, these guidelines do not apply to established or naturally dispersing populations of beaver that were not
therefore “reintroduced”. Additionally, there is a recent increase in recognition in the literature that the human dimen-
sion of environmental projects is a key component of their success or failure (Bennett et al., 2017a, 2017b; Chan
et al., 2007; IUCN & SSC, 2013; Redpath et al., 2015). For example, conflicts between humans and wildlife, or between
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humans about wildlife, may result in threats to species populations or the future success of any attempted species
reintroduction (Dickman, 2017; Manfredo & Dayer, 2004; O'Rourke, 2014).

The British studies of attitudes may have limitations (most notably the ability to which they can be deemed repre-
sentative of a wider population), but they have consistently demonstrated a majority in favor of beaver projects, ranging
between 63 and 95.19% of respondents (Auster, Puttock, & Brazier, 2019). However, the intricacies of the social debate
run deeper than a simple “for or against” question. A nationwide survey found an association between support for
reintroduction and a positive view of potential impacts, and vice versa (Auster et al., 2019). The respondents from the
occupational sectors of “Farming and Agriculture” or “Fisheries and Aquaculture” were less likely to have a favorable
view of beaver impacts and were thus often (though not unanimously) opposed to beaver reintroduction, which is in
line both with other studies conducted in Great Britain (Auster, Barr, & Brazier, 2020a; Crowley, Hinchcliffe, &
McDonald, 2017; Gaywood, 2018; Lang, 2004; Scott Porter Research and Marketing Ltd, 1998) and the aforementioned
conflict challenges which have been observed across mainland Europe.

Socially, when whomever gains or losses from beaver reintroduction is examined it is concluded that (in certain sce-
narios) those people who experience the benefits may differ from those who experience the costs (Brazier et al., 2020;
Gaywood, 2018). Although it is often cited that the potential benefits of beavers will outweigh the costs (Brazier
et al., 2020; Campbell et al., 2007; Gaywood, 2018; Gaywood et al., 2015; Gurnell et al., 2009; Jones et al., 2012; Tayside
Beaver Study Group, 2015), the costs that do occur may be attributed to a small number of people who themselves
derive little or no direct financial benefit. This distinction between potential beneficiaries and the negatively impacted
parties is perhaps most easily demonstrated in the case of beaver damming, where a downstream community may bene-
fit significantly from flood alleviation while the landowner upstream may experience flooding on their property. Thus,
strategic management decisions will need to consider how to bridge this disconnect and address potential conflict issues
while allowing for the potential opportunities for biodiversity, flow attenuation, water quality, and ecotourism to be
maximized.

It is highlighted herein, that to enable maximization of the opportunities from beaver reintroduction that are
reviewed above, these conflicts will need to be appropriately recognized; the best management strategies are those
where issues are mutually addressed between wildlife management authorities and stakeholders (Auster, Barr, &
Brazier, 2020b; Redpath et al., 2015; Rust, 2017; Treves, Wallace, & White, 2009). There are real opportunities resulting
from beavers, as discussed above, but there are real conflict challenges to be addressed as well, and they should be con-
sidered as one within a holistic approach with a closed-loop between the beneficiaries and the negatively affected. Fur-
ther, in the case of reintroduced beavers, such management considerations will need early attention if the potential for
later conflicts is to be reduced, particularly as challenges may not yet exist but could occur post-introduction (Auster
et al., 2019; Conover & Decker, 1991; Coz & Young, 2020).

Finally, holistic management strategies will need to incorporate effective communication to aid the reduction of
potential conflict issues. In a case from Poland, beavers had been reported as of concern by fishery managers, who cited
damage to pond levees. Some of the participants had received compensation for reported damage, but a number of fish-
ery managers had undertaken both authorized and unauthorized beaver culls as the beavers were viewed as problem-
atic. In this scenario, it was reported that “poor communication” by conservation bodies was a particular part of the
problem, with a lack of information on management measures and unresponsiveness from government agencies being
factors which were suggested to have exacerbated conflict (Kloskowski, 2011). However, the literature recognizes that,
when stakeholders are appropriately engaged and communication is effective, trust can be fostered between stake-
holders and the wildlife management authorities (Decker et al., 2015, 2016; Redpath et al., 2015; Rust, 2017; Treves
et al., 2009). This in turn can enable an environment within which, as Redpath et al. remarked in 2013, wildlife man-
agement issues and decisions can be “shared as one” (Redpath et al., 2015).

3.2.1 | Summary of human–beaver interactions

• There are real opportunities for humans provided by beavers, as well as real potential conflicts between humans and
the activity of beavers. The opportunities may be realized by different people to those who incur the costs in certain
contexts.

• Effective management strategies should consider the beneficiaries and cost-bearers in a holistic manner, bridging the
distinctions within a closed-loop management system.
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• Management strategies require clear communication to gain trust between stakeholders and the wildlife manage-
ment authority, thus providing an environment that is conducive toward addressing issues as a collective and reduc-
ing the potential for conflict between parties.

3.2.2 | Human–beaver gaps in understanding

• Where they are reintroduced, living with beavers (and associated management) will be a new concept. How do peo-
ple learn and adapt to this change?

• In policy, what is the best approach for a closed-loop management framework that maximizes opportunities, for
example, ecosystem service provision, while minimizing the potential for conflicts?

• What is the best way to disseminate information regarding approaches to management?

4 | CONCLUSION: FUTURE SCENARIOS AND CONSIDERATIONS

The beaver is clearly the very definition of a keystone species. The myriad ways in which it alters ecosystems to suit its
own needs, which in turn supports other species around it, demonstrate its value in re-naturalizing the heavily

FIGURE 4 A summary figure for the Devon Beaver Project: (a) aerial photo showing the beaver wetland nestled amongst an

agriculturally dominated landscape; (b) an example hydrograph showing the contrast in flow regime between water entering the site (blue)

and water leaving the site (red); (b) summary water quality results from the site for each figure “Above Beaver” to the left is the

concentration entering the site and “Below Beaver” to the right is concentration leaving the site. From left to right: suspended sediment,

phosphate, total oxidized nitrogen, and dissolved organic carbon
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degraded environments that we inhabit and have created. The impacts of beaver reintroduction reviewed herein; to
deliver changes to ecosystem structure and geomorphology, hydrology and water resources, water quality, freshwater
ecology and humans, and society are profound. Beaver impacts are not always positive, at least from a human perspec-
tive, thus it remains critical that the knowledge gaps identified above are addressed as beaver populations grow, to
ensure that improved understanding coupled with clear communication of beaver management can prevail.

Where beavers do deliver positive change, on balance benefits are shown to outweigh the costs associated with bea-
ver reintroduction or management. It is unlikely that any other species, including humans, will deliver these changes,
thus it would seem rational to conclude that beaver population expansion should be supported, wherever habitat is suit-
able and the species naturally occurred historically. Indeed, it is suggested that reintroducing beavers, is a genuine
example of “working with natural processes” or implementing “nature-based solutions”, which are both low cost and
multi-faceted. As such, beaver reintroduction can underpin approaches to reverse the decline of species extinctions
while also delivering ecosystem services, which may increase resilience to climate change and mitigate associated risks
such as flooding and drought.

Of course, such an environmentally progressive approach needs to be implemented hand-in-hand with an appropri-
ate management regime, ideally funded by Government, to capitalize on the environmental goods and services that bea-
vers provide, and established as part of a national (or even international) strategy for the reintroduction of the beaver.
Such management approaches have been normalized in places such as the German state of Bavaria, where beavers
now deliver the wide range of ecosystem services reviewed above, with a pragmatic and flexible approach towards bea-
ver management to support people who experience negative impacts while supporting a favorable conservation status
of the species (Pillai & Heptinstall, 2013; Schwab & Schmidbauer, 2003). Other countries, including GB where beaver
populations are in their infancy, but expanding, would do well to adopt similar management strategies (e.g., see the
River Otter Beaver Trial, 2019) to ensure that successful reintroduction of beavers maximizes the environmental oppor-
tunities and minimizes the social conflicts that may manifest (Box 1).

BOX Case study: Hydrology and water quality—Devon Beaver project

Puttock et al. (2017) undertook research at an enclosed and therefore controlled beaver reintroduction site in
Devon, South West England. The site is situated on a first-order stream. In March 2011, a pair of Eurasian bea-
vers were released into a 3 ha enclosure, dominated by mature willow and birch woodland, in addition to gorse
scrub. Upstream, the site was fed by a 20 ha catchment area dominated by intensively-managed grassland. As
illustrated in Figure 4, beaver activity at the site created a complex wetland, dominated by 13 ponds, dams, and
canal networks (Puttock, Cunliffe, Anderson, & Brazier, 2015). Flow was monitored upstream and downstream
of the beaver ponds.

Monitoring of the site between 2013 and 2016 showed that the 13 ponds covered >1,800 m2 and stored
>1 million liters of water. Across 59 rainfall-runoff storm events, the outflow below the beaver impacted site
showed a more attenuated response relative to water entering the site. Events exhibited on average 34% lower
total event discharges, 30% lower peak discharges, and 29% longer lag times below the beaver dam sequence, in
contrast, to flow entering the site. Critically, Puttock et al. (2017) analyzed a sub-set of the largest flood events
of greatest interest from a flood risk management perspective. Results showed the flow attenuation impact to
persist. Additionally, while the inflow to the site was ephemeral, drying up during drought periods, the outflow
from the site never dried up during the monitoring period, highlighting the ability of increased water storage in
beaver wetland environments to maintain base flow in river systems.

Analysis was undertaken into sediment storage within the site and water quality entering and leaving the
site. A site survey (Puttock et al., 2018) showed that ponds held over 100 t of sediment, 15 t of carbon, and 1 t of
nitrogen. Pond size was shown to be the greatest control over storage, with larger ponds holding more sediment
per unit area. Source estimates indicated that >70% of the sediment trapped in the ponds was from the
upstream agriculturally dominated catchment. A summary of water quality results taken during rainfall-runoff
events (see Puttock et al., 2017) showed that on average, compared to water entering the site, water down-
stream of the beaver dam sequence contained 3 times less sediment, 0.7 times less nitrogen, 5 times less phos-
phate, but twice the dissolved organic carbon content. Associated flow attenuation was shown to result in
further reductions in total loads.

20 of 29 BRAZIER ET AL.



ACKNOWLEDGMENTS
We would like to thank all project partners and landowners who have provided invaluable assistance, expertise, and
beaver site access for the research group at the University of Exeter. The funding sources for this study are a PhD fel-
lowship funded by the Wellcome Trust, University of Exeter and Devon Wildlife Trust, a NERC FRESH PhD Scholar-
ship, and further PhD scholarship funded by the University of Exeter, Devon Wildlife Trust, Plymouth City Council,
and Cornwall Wildlife Trust. Additional support came from NERC grant: NERC/PE/2016_087.

CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.

AUTHOR CONTRIBUTIONS
Richard Brazier: Writing-original draft; writing-review and editing. Alan Puttock: Writing-original draft; writing-
review and editing. Hugh Graham: Writing-original draft; writing-review and editing. Roger Auster: Writing-original
draft; writing-review and editing. Kye Davies: Writing-original draft; writing-review and editing. Chryssa Brown:
Writing-original draft; writing-review and editing.

ORCID
Richard E. Brazier https://orcid.org/0000-0002-8715-0399
Alan Puttock https://orcid.org/0000-0003-0814-7894
Hugh A. Graham https://orcid.org/0000-0001-9451-5010
Roger E. Auster https://orcid.org/0000-0001-7299-8867
Kye H. Davies https://orcid.org/0000-0003-0944-8509
Chryssa M. L. Brown https://orcid.org/0000-0001-8198-3958

RELATED WIREs ARTICLES
Of wood and rivers: Bridging the perception gap
Ecosystem engineers in rivers: An introduction to how and where organisms create positive biogeomorphic feedbacks
Reintegrating the North American beaver (Castor canadensis) in the urban landscape
Catchment systems engineering: An holistic approach to catchment management

FURTHER READING
Wróbel, M. (2020). Population of Eurasian beaver (Castor fiber) in Europe. Global Ecology and Conservation, 23, e01046. https://doi.org/10.

1016/j.gecco.2020.e01046.
Burchsted, D., & Daniels, M. D. (2014). Classification of the alterations of beaver dams to headwater streams in northeastern Connecticut,

U.S.A. Geomorphology, 205, 36–50. https://doi.org/10.1016/j.geomorph.2012.12.029.
Klotz, R. L. (2013). Factors driving the metabolism of two north temperate ponds. Hydrobiologia, 711(1), 9–17. https://doi.

org/10.1007/s10750-013-1450-8.
Enck, J. W., Bishop, P. G., Brown, T. L. & Lamendola, J. E. 1992. Beaver-related Attitudes, Experiences and Knowledge of Key Stakeholders

in Wildlife Management Unit 21. HDRU Series 92-7. Cornell University, Department of Natural Resources, Human Dimensions
Research Unit, Ithaca, NY, USA. https://ecommons.cornell.edu/bitstream/handle/1813/41318/HDRUReport92-7.pdf?sequence=1.

Jonker, S. A., Organ, J. F., Muth, R. M., Zwick, R. R. & Siemer, W. F. 2010. Stakeholder Norms Toward Beaver Management in Massachu-
setts. The Journal of Wildlife Management, 73(7), 1158-1165. https://doi.org/10.2193/2004-160.

McKinstry, M. C. & Anderson, S. H. 1999. Attitudes of Private- and Public-Land Managers in Wyoming, USA, Toward Beaver. Environmen-
tal Management, 23, 95-101. https://doi.org/10.1007/s002679900170.

Payne, N. F. & Peterson, R. P. 1986. Trends in Complaints of Beaver Damage in Wisconsin. Wildlife Society Bulletin, 14(3), 303-307.
Wegener, P., Covino, T., & Wohl, E. (2017). Beaver-mediated lateral hydrologic connectivity, fluvial carbon and nutrient flux, and aquatic

ecosystem metabolism. Water Resources Research, 53(6). https://doi.org/10.1002/2016WR019790.

REFERENCES
Anderson, N. L., Paszkowski, C. A., & Hood, G. A. (2015). Linking aquatic and terrestrial environments: Can beaver canals serve as move-

ment corridors for pond-breeding amphibians? Animal Conservation, 18(3), 287–294. https://doi.org/10.1111/acv.12170
Auster, R. E., Barr, S., & Brazier, R. (2020a). Alternative perspectives of the angling community on Eurasian beaver (Castor fiber)

reintroduction in the river otter beaver trial. Journal of Environmental Planning and Management. https://doi.org/10.1080/09640568.
2020.1816933

BRAZIER ET AL. 21 of 29

https://orcid.org/0000-0002-8715-0399
https://orcid.org/0000-0002-8715-0399
https://orcid.org/0000-0003-0814-7894
https://orcid.org/0000-0003-0814-7894
https://orcid.org/0000-0001-9451-5010
https://orcid.org/0000-0001-9451-5010
https://orcid.org/0000-0001-7299-8867
https://orcid.org/0000-0001-7299-8867
https://orcid.org/0000-0003-0944-8509
https://orcid.org/0000-0003-0944-8509
https://orcid.org/0000-0001-8198-3958
https://orcid.org/0000-0001-8198-3958
https://doi.org/10.1002/WAT2.1076
https://doi.org/10.1002/WAT2.1271
https://doi.org/10.1002/WAT2.1323
https://doi.org/10.1002/WAT2.1417
https://doi.org/10.1016/j.gecco.2020.e01046
https://doi.org/10.1016/j.gecco.2020.e01046
https://ecommons.cornell.edu/bitstream/handle/1813/41318/HDRUReport92-7.pdf?sequence=1
https://doi.org/10.1111/acv.12170
https://doi.org/10.1080/09640568.2020.1816933
https://doi.org/10.1080/09640568.2020.1816933


Auster, R. E., Barr, S., & Brazier, R. (2020b). Improving engagement in managing reintroduction conflicts: Learning from beaver
reintroduction. Journal of Environmental Planning and Management. https://doi.org/10.1080/09640568.2020.1837089

Auster, R. E., Puttock, A., & Brazier, R. (2019). Unravelling perceptions of Eurasian beaver reintroduction in Great Britain. Area, 52(2),
364–375. https://doi.org/10.1111/area.12576

Bashinskiy, I. V. (2014). Impact assessment of European beaver reintroduction on amphibians of small rivers. Russian Journal of Biological
Invasions, 5, 134–145. https://doi.org/10.1134/S2075111714030035

Bashinskiy, I. V., & Osipov, V. V. (2016). Beavers in Russian forest-steppe-characteristics of ponds and their impact on fishes and amphib-
ians. Russian Journal of Theriology, 15(1), 34–42.

Beedle, D. L. (1991). Physical dimensions and hydrologic effects of beaver ponds on Kuiu Island in southeast Alaska. Corvallis, OR: Oregon
State University.

Benke, A., & Wallace, J. B. (2003). Influence of wood on invertebrate communities in streams and rivers. In S. V. Gregory, K. L. Boyer, &
A. M. Gurnell (Eds.), The ecology and management of wood in world rivers [Symposium 37] (pp. 149–177). Bethesda, MD: American Fish-
eries Society.

Benke, A. C., Van Arsdall, T. C., Gillespie, D. M., & Parrish, F. K. (1984). Invertebrate productivity in a subtropical Blackwater River: The
importance of habitat and life history. Ecological Monographs, 54(1), 25–63. https://doi.org/10.2307/1942455

Benke, A. C., Ward, G. M., & Richardson, T. D. (1999). Beaver-impounded wetlands of the southeastern coastal plain: Habitat-specific com-
position and dynamics of invertebrates. In D. P. Batzer, R. B. Rader, & S. A. Wissinger (Eds.), Invertebrates in freshwather wetlands of
North America: Ecology and management (pp. 217–245). Toronto, ON: Wiley.

Bennett, N. J., Roth, R., Klain, S. C., Chan, K., Christie, P., Clark, D. A., … Wyborn, C. (2017a). Conservation social science: Understanding
and integrating human dimensions to improve conservation. Biological Conservation, 205, 93–108. https://doi.org/10.1016/j.biocon.2016.
10.006

Bennett, N. J., Roth, R., Klain, S. C., Chan, K. M. A., Clark, D. A., Cullman, G., … Veríssimo, D. (2017b). Mainstreaming the social sciences
in conservation. Conservation Biology, 31(1), 56–66. https://doi.org/10.1111/cobi.12788

Błȩdzki, L. A., Bubier, J. L., Moulton, L. A., & Kyker-Snowman, T. D. (2011). Downstream effects of beaver ponds on the water quality of
New England first- and second-order streams. Ecohydrology, 4(5), 698–707. https://doi.org/10.1002/eco.163

Bouwes, N., Weber, N., Jordan, C. E., Saunders, W. C., Tattam, I. A., Volk, C., … Pollock, M. M. (2016). Ecosystem experiment reveals bene-
fits of natural and simulated beaver dams to a threatened population of steelhead ( Oncorhynchus mykiss ). Scientific Reports, 6(1), 1–12.
https://doi.org/10.1038/srep28581

Brazier, R. E., Elliott, M., Andison, E., Auster, R. E., Bridgewater, S., Burgess, P., … Vowles, A. (2020). River otter beaver trial: Science and evi-
dence report. Exeter, UK: University of Exeter Retrieved from: https://www.exeter.ac.uk/creww/research/beavertrial/

Brown, A. G., Lespez, L., Sear, D. A., Macaire, J., Houben, P., Klimek, K., … Pears, B. (2018). Natural vs Anthropocene streams in Europe:
History, ecology and implications for restoration, river-rewilding and riverine ecosystem services. Earth Science Reviews, 180, 185–205.

Burns, D. A., & McDonnell, J. J. (1998). Effects of a beaver pond on runoff processes: Comparison of two headwater catchments. Journal of
Hydrology, 205(3–4), 248–264. https://doi.org/10.1016/S0022-1694(98)00081-X

Bush, B. M., Stenert, C., Maltchik, L., & Batzer, D. P. (2019). Beaver-created successional gradients increase β-diversity of invertebrates by
turnover in stream-wetland complexes. Freshwater Biology, 64(7), 1265–1274. https://doi.org/10.1111/fwb.13302

Bush, B. M., & Wissinger, S. A. (2016). Invertebrates in beaver-created wetlands and ponds. In D. Batzer & D. Boix (Eds.), Invertebrates in
Freshwater Wetlands: An International Perspective on their Ecology (pp. 411–449). Cham: Springer International Publishing. https://doi.
org/10.1007/978-3-319-24978-0_12

Butler, D. R. (1991). Beavers as agents of biogeomorphic change: A review and suggestions for teaching exercises. Journal of Geography, 90
(5), 210–217. https://doi.org/10.1080/00221349108979304

Butler, D. R. (1995). Zoogeomorphology—Animals as geomorphic agents. Cambridge, UK: Cambridge University Press.
Butler, D. R., & Malanson, G. P. (1994). Beaver Landforms. The Canadian Geographer, 38(1), 76–79. https://doi.org/10.1111/j.1541-0064.

1994.tb01519.x
Butler, D. R., & Malanson, G. P. (1995). Sedimentation rates and patterns in beaver ponds in a mountain environment. Geomorphology, 13

(1–4), 255–269. https://doi.org/10.1016/0169-555X(95)00031-Y
Butler, D. R., & Malanson, G. P. (2005). The geomorphic influences of beaver dams and failures of beaver dams. Geomorphology, 71(1–2),

48–60. https://doi.org/10.1016/j.geomorph.2004.08.016
Butler, J. R. A., Radford, A., Riddington, G., & Laughton, R. (2009). Evaluating an ecosystem service provided by Atlantic salmon, sea trout

and other fish species in the river Spey, Scotland: The economic impact of recreational rod fisheries. Fisheries Research, 96(2), 259–266.
https://doi.org/10.1016/j.fishres.2008.12.006

Bylak, A., & Kukuła, K. (2018). Living with an engineer: Fish metacommunities in dynamic patchy environments. Marine and Freshwater
Research, 69(6), 883–893. https://doi.org/10.1071/MF17255

Bylak, A., Kukuła, K., & Mitka, J. (2014). Beaver impact on stream fish life histories: The role of landscape and local attributes. Canadian
Journal of Fisheries and Aquatic Sciences, 71(11), 1603–1615. https://doi.org/10.1139/cjfas-2014-0105

Campbell, R., Dutton, A., & Hughes, J. (2007). Economic impacts of the beaver: Report for the Wild Britain Initiative. Oxford: University of
Oxford.

Campbell-Palmer, R., Gow, D., Schwab, G., Halley, D. J., Gurnell, J., Girling, S., … Jones, S. (2016). The Eurasian beaver handbook: Ecology
and Management of Castor fiber. Exeter, UK: Pelagic Publishing Ltd.

22 of 29 BRAZIER ET AL.

https://doi.org/10.1111/area.12576
https://doi.org/10.1134/S2075111714030035
https://doi.org/10.2307/1942455
https://doi.org/10.1016/j.biocon.2016.10.006
https://doi.org/10.1016/j.biocon.2016.10.006
https://doi.org/10.1111/cobi.12788
https://doi.org/10.1002/eco.163
https://doi.org/10.1038/srep28581
https://www.exeter.ac.uk/creww/research/beavertrial/
https://doi.org/10.1016/S0022-1694(98)00081-X
https://doi.org/10.1111/fwb.13302
https://doi.org/10.1007/978-3-319-24978-0_12
https://doi.org/10.1007/978-3-319-24978-0_12
https://doi.org/10.1080/00221349108979304
https://doi.org/10.1111/j.1541-0064.1994.tb01519.x
https://doi.org/10.1111/j.1541-0064.1994.tb01519.x
https://doi.org/10.1016/0169-555X(95)00031-Y
https://doi.org/10.1016/j.geomorph.2004.08.016
https://doi.org/10.1016/j.fishres.2008.12.006
https://doi.org/10.1071/MF17255
https://doi.org/10.1139/cjfas-2014-0105


Campbell-Palmer, R., Schwab, G., & Girling, S. (2015). Managing wild Eurasian beavers: A review of European management practices with
consideration for Scottish application. (Commisssioned Report N0 812). Inverness, Scotland: Scottish Natural Heritage. https://doi.org/10.
13140/RG.2.1.3804.5520

Cazzolla Gatti, R., Callaghan, T. V., Rozhkova-Timina, I., Dudko, A., Lim, A., Vorobyev, S. N., … Pokrovsky, O. S. (2018). The role of Eur-
asian beaver (Castor fiber) in the storage, emission and deposition of carbon in lakes and rivers of the river Ob flood plain, western Sibe-
ria. Science of the Total Environment, 644, 1371–1379. https://doi.org/10.1016/j.scitotenv.2018.07.042

Chan, K. M. A., Pringle, R. M., Ranganathan, J., Boggs, C. L., Chan, Y. L., Ehrlich, P. R., … Macmynowski, D. P. (2007). When agendas col-
lide: Human welfare and biological conservation. Conservation Biology, 21(1), 59–68. https://doi.org/10.1111/j.1523-1739.2006.00570.x

Chisholm, I. M., Hubert, W. A., & Wesche, T. A. (1987). Winter stream conditions and use of habitat by brook trout in high-elevation Wyo-
ming streams. Transactions of the American Fisheries Society, 116(2), 176–184. https://doi.org/10.1577/1548-8659(1987)116<176:
WSCAUO>2.0.CO;2

Cirmo, C. P., & Driscoll, C. T. (1993). Beaver pond biogeochemistry: Acid neutralizing capacity generation in a headwater wetland. Wetlands,
13(4), 277–292. https://doi.org/10.1007/BF03161294

Cirmo, C. P., & Driscoll, C. T. (1996). The impacts of a watershed CaCO3 treatment on stream and wetland biogeochemistry in the
Adirondack Mountains. Biogeochemistry, 32(3), 265–297. https://doi.org/10.1007/BF02187142

Clark, J. M., Lane, S. N., Chapman, P. J., & Adamson, J. K. (2007). Export of dissolved organic carbon from an upland peatland during storm
events: Implications for flux estimates. Journal of Hydrology, 347(3), 438–447. https://doi.org/10.1016/j.jhydrol.2007.09.030

Clifford, H. F., Wiley, G. M., & Casey, R. J. (1993). Macroinvertebrates of a beaver-altered boreal stream of Alberta, Canada, with special ref-
erence to the fauna on the dams. Canadian Journal of Zoology, 71(7), 1439–1447. https://doi.org/10.1139/z93-199

Coles, B. (2006). Beavers in Britain's past. Oxford: Oxbow Books and WARP.
Collen, P., & Gibson, R. J. (2000). The general ecology of beavers (Castor spp.), as related to their influence on stream ecosystems and ripar-

ian habitats, and the subsequent effects on fish—A review. Reviews in Fish Biology and Fisheries, 10(4), 439–461. https://doi.org/10.1023/
A:1012262217012

Conover, M. R., & Decker, D. J. (1991). Wildlife damage to crops: Perceptions of agricultural and wildlife professionals in 1957 and 1987.
Wildlife Society Bulletin (1973–2006), 19(1), 46–52.

Conroy, J., & Kitchener, A. (1996). The Eurasian beaver (Castor fiber) in Scotland: A review of the literature and historical evidence. Reteieved
from http://www.snh.org.uk/pdfs/publications/review/049.pdf.

Correll, D., Jordan, T., & Weller, D. (2000). Beaver pond biogeochemical effects in the Maryland coastal plain. Biogeochemistry, 49(3),
217–239. https://doi.org/10.1023/A:1006330501887

Coz, D. M., & Young, J. C. (2020). Conflicts over wildlife conservation: Learning from the reintroduction of beavers in Scotland. People and
Nature. https://doi.org/10.1002/pan3.100762(2), 406–419.

Crowley, S. L., Hinchcliffe, S., & McDonald, R. A. (2017). Nonhuman citizens on trial: The ecological politics of a beaver reintroduction.
Environment and Planning A: Economy and Space, 49(8), 1846–1866. https://doi.org/10.1177/0308518X17705133

Cunjak, R. A. (1996). Winter habitat of selected stream fishes and potential impacts from land-use activity. Canadian Journal of Fisheries
and Aquatic Sciences, 53(S1), 267–282. https://doi.org/10.1139/f95-275

Cunningham, J. M., Calhoun, A. J. K., & Glanz, W. E. (2007). Pond breeding amphibian species richness and habitat selection in a beaver-
modified landscape. Journal of Wildlife Management, 78, 2517–2526. https://doi.org/10.2193/2006-510

Curran, J. C., & Cannatelli, K. M. (2014). The impact of beaver dams on the morphology of a river in the eastern United States with implica-
tions for river restoration. Earth Surface Processes and Landforms, 39(9), 1236–1244. https://doi.org/10.1002/esp.3576

Curtin, S. (2009). Wildlife tourism: The intangible, psychological benefits of human–wildlife encounters. Current Issues in Tourism, 12(5–6),
451–474. https://doi.org/10.1080/13683500903042857

Curtin, S. (2010). What makes for memorable wildlife encounters? Revelations from ‘serious’ wildlife tourists. Journal of Ecotourism, 9(2),
149–168. https://doi.org/10.1080/14724040903071969

Curtin, S., & Kragh, G. (2014). Wildlife tourism: Reconnecting people with nature. Human Dimensions of Wildlife, 19(6), 545–554. https://
doi.org/10.1080/10871209.2014.921957

Czerniawski, R., & Sługocki, Ł. (2018). A comparison of the effect of beaver and human-made impoundments on stream zooplankton.
Ecohydrology, 11(5), e1963. https://doi.org/10.1002/eco.1963

Dalbeck, L., Hachtel, M., & Campbell-Palmer, R. (2020). A review of the influence of beaver Castor fiber on amphibian assemblages in the
floodplains of European temperate streams and rivers. Herpetological Journal, 30, 134–145. https://doi.org/10.33256/hj30.3.134145

Dalbeck, L., Janssen, J., & Luise Völsgen, S. (2014). Beavers (Castor fiber) increase habitat availability, heterogeneity and connectivity for
common frogs (Rana temporaria). Amphibia-Reptilia, 35(3), 321–329. https://doi.org/10.1163/15685381-00002956

Dalbeck, L., Lüscher, B., & Ohlhoff, D. (2007). Beaver ponds as habitat of amphibian communities in a central European highland.
Amphibia-Reptilia, 28, 493–501. https://doi.org/10.1163/156853807782152561

Danilov, P. I., & Fyodorov, F. V. (2015). Comparative characterization of the building activity of Canadian and European beavers in northern
European Russia. Russian Journal of Ecology, 46(3), 272–278. https://doi.org/10.1134/S1067413615030029

de Visscher, M., Nyssen, J., Pontzeele, J., Billi, P., & Frankl, A. (2014). Spatio-temporal sedimentation patterns in beaver ponds along the
Chevral river, Ardennes, Belgium. Hydrological Processes, 28, 1602–1615. https://doi.org/10.1002/hyp.9702

Decker, D., Smith, C., Forstchen, A., Hare, D., Pomeranz, E., Doyle-Capitman, C., … Organ, J. (2016). Governance principles for wildlife con-
servation in the 21st century. Conservation Letters, 9(4), 290–295. https://doi.org/10.1111/conl.12211

BRAZIER ET AL. 23 of 29

https://doi.org/10.13140/RG.2.1.3804.5520
https://doi.org/10.13140/RG.2.1.3804.5520
https://doi.org/10.1016/j.scitotenv.2018.07.042
https://doi.org/10.1111/j.1523-1739.2006.00570.x
https://doi.org/10.1577/1548-8659(1987)116%3C176:WSCAUO%3E2.0.CO;2
https://doi.org/10.1577/1548-8659(1987)116%3C176:WSCAUO%3E2.0.CO;2
https://doi.org/10.1007/BF03161294
https://doi.org/10.1007/BF02187142
https://doi.org/10.1016/j.jhydrol.2007.09.030
https://doi.org/10.1139/z93-199
https://doi.org/10.1023/A:1012262217012
https://doi.org/10.1023/A:1012262217012
http://www.snh.org.uk/pdfs/publications/review/049.pdf
https://doi.org/10.1023/A:1006330501887
https://doi.org/10.1002/pan3.10076
https://doi.org/10.1177/0308518X17705133
https://doi.org/10.1139/f95-275
https://doi.org/10.2193/2006-510
https://doi.org/10.1002/esp.3576
https://doi.org/10.1080/13683500903042857
https://doi.org/10.1080/14724040903071969
https://doi.org/10.1080/10871209.2014.921957
https://doi.org/10.1080/10871209.2014.921957
https://doi.org/10.1002/eco.1963
https://doi.org/10.33256/hj30.3.134145
https://doi.org/10.1163/15685381-00002956
https://doi.org/10.1163/156853807782152561
https://doi.org/10.1134/S1067413615030029
https://doi.org/10.1002/hyp.9702
https://doi.org/10.1111/conl.12211


Decker, D. J., Forstchen, A. B., Pomeranz, E. F., Smith, C. A., Riley, S. J., Jacobson, C. A., … Batcheller, G. R. (2015). Stakeholder engagement
in wildlife management: Does the public trust doctrine imply limits? The Journal of Wildlife Management, 79(2), 174–179. https://doi.
org/10.1002/jwmg.809

Descloux, S., Datry, T., & Usseglio-Polatera, P. (2014). Trait-based structure of invertebrates along a gradient of sediment colmation: Benthos
versus hyporheos responses. Science of the Total Environment, 466–467, 265–276. https://doi.org/10.1016/j.scitotenv.2013.06.082

Devito, K. J., Dillon, P. J., & Lazerte, B. D. (1989). Phosphorus and nitrogen retention in five Precambrian shield wetlands. Biogeochemistry, 8
(3), 185–204. https://doi.org/10.1007/BF00002888

Devito, K. J., & Dillon, P. J. (1993). Importance of runoff and winter anoxia to the P and N dynamics of a beaver pond. Canadian Journal of
Fisheries and Aquatic Sciences, 50(10), 2222–2234. https://doi.org/10.1139/f93-248

Dickman, A. J. (2017). Complexities of conflict: The importance of considering social factors for effectively resolving human–wildlife conflict.
Animal Conservation, 13(5), 458–466. https://doi.org/10.1111/j.1469-1795.2010.00368.x

Dillon, P. J., Molot, L. A., & Scheider, W. A. (1991). Phosphorus and nitrogen export from forested stream catchments in Central Ontario.
Journal of Environmental Quality, 20(4), 857. https://doi.org/10.2134/jeq1991.00472425002000040025x

Donkor, N. T., & Fryxell, J. M. (2000). Lowland boreal forests characterization in Algonquin Provincial Park relative to beaver (Castor can-
adensis) foraging and edaphic factors. Plant Ecology, 148(1), 1–12. https://doi.org/10.1023/A:1009860512339

Ecke, F., Levanoni, O., Audet, J., Carlson, P., Eklöf, K., Hartman, G., … Futter, M. (2017). Meta-analysis of environmental effects of beaver in
relation to artificial dams. Environmental Research Letters, 12(11), 113002. https://doi.org/10.1088/1748-9326/aa8979

Ehrman, T. P., & Lamberti, G. A. (1992). Hydraulic and particulate matter retention in a 3rd-order Indiana stream. Journal of the North
American Benthological Society, 11(4), 341–349. https://doi.org/10.2307/1467556

Fairfax, E., & Whittle, A. (2020). Smokey the beaver: Beaver-dammed riparian corridors stay green during wildfire throughout the western
USA. Ecological Applications. https://doi.org/10.1002/eap.2225

Forseth, T., Barlaup, B. T., Finstad, B., Fiske, P., Gjøsæter, H., Falkegård, M., … Wennevik, V. (2017). The major threats to Atlantic salmon
in Norway. ICES Journal of Marine Science, 74(6), 1496–1513. https://doi.org/10.1093/icesjms/fsx020

France, R. L. (1997). The importance of beaver lodges in structuring littoral communities in boreal headwater lakes. Canadian Journal of
Zoology, 75(7), 1009–1013. https://doi.org/10.1139/z97-121

Fuller, M. R., & Peckarsky, B. L. (2011). Ecosystem engineering by beavers affects mayfly life histories. Freshwater Biology, 56(5), 969–979.
https://doi.org/10.1111/j.1365-2427.2010.02548.x

Gaywood, M. J. (2018). Reintroducing the Eurasian beaver Castor fiber to Scotland. Mammal Review, 48(1), 48–61. https://doi.org/10.1111/
mam.12113

Gaywood, M. J., Stringer, A., Blake, D., Hall, J., Hennessy, M., Tree, A., … Blyth, S. (2015). Beavers in Scotland: A Report to the Scottish Gov-
ernment (ISBN 978–1–78391-363-3). Inverness, Scotland: Scottish Natural Heritage Retrieved from https://www.nature.scot/sites/
default/files/Publication%202015%20-%20Beavers%20in%20Scotland%20A%20report%20to%20Scottish%20Government.pdf

Giriat, D., Gorczyca, E., & Sobucki, M. (2016). Beaver ponds' impact on fluvial processes (Beskid Niski Mts, SE Poland). The Science of the
Total Environment, 544, 339–353. https://doi.org/10.1016/j.scitotenv.2015.11.103

Godfrey, A. (2003). A review of the invertebrate interest of coarse woody debris in England—ENRR513. York, UK: Natural England Retrieved
from http://publications.naturalengland.org.uk/publication/132018

Gorczyca, E., Krzemie�n, K., Sobucki, M., & Jarzyna, K. (2018). Can beaver impact promote river renaturalization? The example of the Raba
River, southern Poland. Science of the Total Environment, 615, 1048–1060. https://doi.org/10.1016/j.scitotenv.2017.09.245

Graham, H. A., Puttock, A., Macfarlane, W. W., Wheaton, J. M., Gilbert, J. T., Campbell-Palmer, R., … Brazier, R. E. (2020). Modelling Eur-
asian beaver foraging habitat and dam suitability, for predicting the location and number of dams throughout catchments in Great
Britain. European Journal of Wildlife Research, 66(42), 1–18. https://doi.org/10.1007/s10344-020-01379-w

Grand-Clement, E., Luscombe, D. J., Anderson, K., Gatis, N., Benaud, P., & Brazier, R. E. (2014). Antecedent conditions control carbon loss
and downstream water quality from shallow, damaged peatlands. The Science of the Total Environment, 493, 961–973. https://doi.org/10.
1016/j.scitotenv.2014.06.091

Green, K. C., & Westbrook, C. J. (2009). Changes in Riparian area structure, channel hydraulics, and sediment yield following loss of Beaver
Dams. Journal of Ecosystems and Management, 10(1), 68–79.

Grudzinski, B. P., Cummins, H., & Vang, T. K. (2019). Beaver canals and their environmental effects. Progress in Physical Geography: Earth
and Environment, 44(2), 189–211. https://doi.org/10.1177/0309133319873116

Grygoruk, M., & Nowak, M. (2014). Spatial and temporal variability of channel retention in a lowland temperate Forest stream settled by
European beaver (Castor fiber). Forests, 5(9), 2276–2288. https://doi.org/10.3390/f5092276

Gurnell, A. M. (1998). The hydrogeomorphological effects of beaver dam-building activity. Progress in Physical Geography, 22(2), 167–189.
https://doi.org/10.1177/030913339802200202

Gurnell, A. M., Piégay, H., Swanson, F. J., & Gregory, S. V. (2002). Large wood and fluvial processes. Freshwater Biology, 47(4), 601–619.
https://doi.org/10.1046/j.1365-2427.2002.00916.x

Gurnell, J., Gurnell, A. M., Demeritt, D., Lurz, P. W. W., Shirley, M. D. F., Rushton, S. P., … Hare, E. J. (2009). The feasibility and acceptability
of reintroducing the European beaver to England—NECR002 (commissioned report NECR002). York, UK: Natural England Retrieved from
http://publications.naturalengland.org.uk/publication/45003

Hafen, K. C., Wheaton, J. M., Roper, B. B., Bailey, P., & Bouwes, N. (2020). Influence of topographic, geomorphic and hydrologic variables
on beaver dam height and persistence in the intermountain west, USA. Earth Surface Processes and Landforms, 45(11), 2664–2674.
https://doi.org/10.1002/esp.4921

24 of 29 BRAZIER ET AL.

https://doi.org/10.1002/jwmg.809
https://doi.org/10.1002/jwmg.809
https://doi.org/10.1016/j.scitotenv.2013.06.082
https://doi.org/10.1007/BF00002888
https://doi.org/10.1139/f93-248
https://doi.org/10.1111/j.1469-1795.2010.00368.x
https://doi.org/10.2134/jeq1991.00472425002000040025x
https://doi.org/10.1023/A:1009860512339
https://doi.org/10.1088/1748-9326/aa8979
https://doi.org/10.2307/1467556
https://doi.org/10.1002/eap.2225
https://doi.org/10.1093/icesjms/fsx020
https://doi.org/10.1139/z97-121
https://doi.org/10.1111/j.1365-2427.2010.02548.x
https://doi.org/10.1111/mam.12113
https://doi.org/10.1111/mam.12113
https://www.nature.scot/sites/default/files/Publication%202015%20-%20Beavers%20in%20Scotland%20A%20report%20to%20Scottish%20Government.pdf
https://www.nature.scot/sites/default/files/Publication%202015%20-%20Beavers%20in%20Scotland%20A%20report%20to%20Scottish%20Government.pdf
https://doi.org/10.1016/j.scitotenv.2015.11.103
http://publications.naturalengland.org.uk/publication/132018
https://doi.org/10.1016/j.scitotenv.2017.09.245
https://doi.org/10.1007/s10344-020-01379-w
https://doi.org/10.1016/j.scitotenv.2014.06.091
https://doi.org/10.1016/j.scitotenv.2014.06.091
https://doi.org/10.1177/0309133319873116
https://doi.org/10.3390/f5092276
https://doi.org/10.1177/030913339802200202
https://doi.org/10.1046/j.1365-2427.2002.00916.x
http://publications.naturalengland.org.uk/publication/45003
https://doi.org/10.1002/esp.4921


Hägglund, Å., & Sjöberg, G. (1999). Effects of beaver dams on the fish fauna of forest streams. Forest Ecology and Management, 115(2),
259–266. https://doi.org/10.1016/S0378-1127(98)00404-6

Halley, D., Rosell, F., & Saveljev, A. (2012). Population and distribution of Eurasian beaver (Castor fiber). Baltic Forestry, 18(1), 168–175.
Harrington, L. A., Feber, R., Raynor, R., & Macdonald, D. W. (2015). SNH commissioned report 685: The Scottish beaver trial: Ecological moni-

toring of the European beaver Castor fiber and other riparian mammals 2009–2014, final report. Inverness, Scotland: Scottish Natural Her-
itage Retrieved from https://www.nature.scot/snh-commissioned-report-685-scottish-beaver-trial-ecological-monitoring-european-
beaver-castor-fiber

Hartman, G., & Tornlov, S. (2006). Influence of watercourse depth and width on dam-building behaviour by Eurasian beaver (Castor fiber).
Journal of Zoology, 268(2), 127–131. https://doi.org/10.1111/j.1469-7998.2005.00025.x

Harvey, G. L., Henshaw, A. J., Brasington, J., & England, J. (2019). Burrowing invasive species: An unquantified erosion risk at the aquatic-
terrestrial Interface. Reviews of Geophysics, 57, 1018–1036. https://doi.org/10.1029/2018RG000635

Harvey, G. L., Henshaw, A. J., Parker, C., & Sayer, C. D. (2018). Re-introduction of structurally complex wood jams promotes channel and
habitat recovery from overwidening: Implications for river conservation. Aquatic Conservation: Marine and Freshwater Ecosystems, 28(2),
395–407. https://doi.org/10.1002/aqc.2824

Hausmann, A., Slotow, R., Fraser, I., & Minin, E. D. (2017). Ecotourism marketing alternative to charismatic megafauna can also support
biodiversity conservation. Animal Conservation, 20(1), 91–100. https://doi.org/10.1111/acv.12292

Heidecke, D., & Klenner-Fringes, B. (1992). Studie über die Habitatnutzung des Bibers in der Kulturlandschaft. In Materialien Des 2. Inter-
nationalen Symposiums Semiaquatische Säugetiere (pp. 215–265). Halle, Germany: Martin-Luther-Universität.

Hering, D., Gerhard, M., Kiel, E., Ehlert, T., & Pottgiesser, T. (2001). Review study on near-natural conditions of central European mountain
streams, with particular reference to debris and beaver dams: Results of the “REG meeting” 2000. Limnologica - Ecology and Manage-
ment of Inland Waters, 31(2), 81–92. https://doi.org/10.1016/S0075-9511(01)80001-3

Herman, M. R., & Nejadhashemi, A. P. (2015). A review of macroinvertebrate- and fish-based stream health indices. Ecohydrology & Hydrobi-
ology, 15(2), 53–67. https://doi.org/10.1016/j.ecohyd.2015.04.001

Hewett, C. J. M., Wilkinson, M. E., Jonczyk, J., & Quinn, P. F. (2020). Catchment systems engineering: An holistic approach to catchment
management. WIREs Water, 7(3), e1417. https://doi.org/10.1002/wat2.1417

Higginbottom, K. (2004). Wildlife tourism: An introduction. In Wildlife tourism: Impacts, management and planning (pp. 1–11). Atlana, Vic-
toria: Common Ground Retrieved from https://sustain.pata.org/wp-content/uploads/2014/12/WildlifeTourism-impacts.pdf

Hood, G. A., & Bayley, S. E. (2008). Beaver (Castor canadensis) mitigate the effects of climate on the area of open water in boreal wetlands in
western Canada. Biological Conservation, 141(2), 556–567. https://doi.org/10.1016/j.biocon.2007.12.003

Hood, G. A., & Larson, D. G. (2015). Ecological engineering and aquatic connectivity: A new perspective from beaver-modified wetlands.
Freshwater Biology, 60, 198–208. https://doi.org/10.1111/fwb.12487

Horák, J., Vávrová, E., & Chobot, K. (2010). Habitat preferences influencing populations, distribution and conservation of the endangered
saproxylic beetle Cucujus cinnaberinus (Coleoptera: Cucujidae) at the landscape level. EJE, 107(1), 81–88. https://doi.org/10.14411/eje.
2010.011

IUCN & SSC. (2013). Guidelines for reintroductions and other conservation translocations, version 1.0. Gland, Switzerland: International Union
for the Conservation of Nature & Species Survival Commission Retrieved from https://portals.iucn.org/library/efiles/documents/2013-
009.pdf

Ives, R. L. (1942). The beaver–meadow complex. Journal of Geomorphology, 5, 191–203.
John, S., & Klein, A. (2004). Hydrogeomorphic effects of beaver dams on floodplain morphology: Avulsion processes and sediment fluxes in

upland valley floors (Spessart, Germany). Quaternaire, 15(1–2), 219–231.
Johnson, J., & Weiss, E. (2006). Catalog of Waters Important for Spawning, Rearing or Migration of Anadromous Fishes, Southwestern Region,

Anchorage, Alaska. Special Publication No. 12-08 (p. 474). Anchorage, AK: Alaska Department of Fish and Game.
Johnson, M. F., Thorne, C. R., Castro, J. M., Kondolf, G. M., Mazzacano, C. S., Rood, S. B., & Westbrook, C. (2020). Biomic river restoration:

A new focus for river management. River Research and Applications, 36, 3–12. https://doi.org/10.1002/rra.3529
Johnston, C. A. (1991). Sediment and nutrient retention by freshwater wetlands: Effects on surface water quality. Critical Reviews in Environ-

mental Control, 21(5–6), 491–565. https://doi.org/10.1080/10643389109388425
Johnston, C. A. (2014). Beaver pond effects on carbon storage in soils. Geoderma, 213, 371–378. https://doi.org/10.1016/j.geoderma.2013.

08.025
Johnston, C. A. (2017). Ecosystem engineers: Beaver ponds. In C. A. Johnston (Ed.), Beavers: Boreal Ecosystem Engineers (pp. 13–49). Cham:

Springer International Publishing. https://doi.org/10.1007/978-3-319-61533-2_2
Johnston, C. A., & Naiman, R. J. (1987). Boundary dynamics at the aquatic-terrestrial interface: The interface of beaver and geomorphology.

Landscape Ecology, 1, 47–57. https://doi.org/10.1007/BF02275265
Johnston, C. A., & Naiman, R. J. (1990). Browse selection by beaver: Effects on riparian forest composition. Canadian Journal of Forest

Research, 20(7), 1036–1043. https://doi.org/10.1139/x90-138
Johnston, C. A., Pinay, G., Arens, C., & Naiman, R. J. (1995). Influence of soil properties on the biogeochemistry of a beaver meadow

Hydrosequence. Soil Science Society of America Journal, 59(6), 1789. https://doi.org/10.2136/sssaj1995.03615995005900060041x
Jones, A. L., Halley, D. J., Gow, D., Branscombe, J., & Aykroyd, T. (2012). Welsh beaver assessment initiative report: An investigation into the

feasibility of reintroducing European beaver (Castor fiber) to Wales. Cardiff, UK: Wildlife Trusts Wales Retrieved from https://www.
welshbeaverproject.org/wp-content/uploads/2012/07/58919-Welsh-Beaver-Report-Low-Res-5.pdf

BRAZIER ET AL. 25 of 29

https://doi.org/10.1016/S0378-1127(98)00404-6
https://www.nature.scot/snh-commissioned-report-685-scottish-beaver-trial-ecological-monitoring-european-beaver-castor-fiber
https://www.nature.scot/snh-commissioned-report-685-scottish-beaver-trial-ecological-monitoring-european-beaver-castor-fiber
https://doi.org/10.1111/j.1469-7998.2005.00025.x
https://doi.org/10.1029/2018RG000635
https://doi.org/10.1002/aqc.2824
https://doi.org/10.1111/acv.12292
https://doi.org/10.1016/S0075-9511(01)80001-3
https://doi.org/10.1016/j.ecohyd.2015.04.001
https://doi.org/10.1002/wat2.1417
https://sustain.pata.org/wp-content/uploads/2014/12/WildlifeTourism-impacts.pdf
https://doi.org/10.1016/j.biocon.2007.12.003
https://doi.org/10.1111/fwb.12487
https://doi.org/10.14411/eje.2010.011
https://doi.org/10.14411/eje.2010.011
https://portals.iucn.org/library/efiles/documents/2013-009.pdf
https://portals.iucn.org/library/efiles/documents/2013-009.pdf
https://doi.org/10.1002/rra.3529
https://doi.org/10.1080/10643389109388425
https://doi.org/10.1016/j.geoderma.2013.08.025
https://doi.org/10.1016/j.geoderma.2013.08.025
https://doi.org/10.1007/978-3-319-61533-2_2
https://doi.org/10.1007/BF02275265
https://doi.org/10.1139/x90-138
https://doi.org/10.2136/sssaj1995.03615995005900060041x
https://www.welshbeaverproject.org/wp-content/uploads/2012/07/58919-Welsh-Beaver-Report-Low-Res-5.pdf
https://www.welshbeaverproject.org/wp-content/uploads/2012/07/58919-Welsh-Beaver-Report-Low-Res-5.pdf


Jones, K., Gilvear, D., Willby, N., & Gaywood, M. (2009). Willow (Salix spp.) and aspen (Populus tremula) regrowth after felling by the Eur-
asian beaver (Castor fiber): Implications for riparian woodland conservation in Scotland. Aquatic Conservation: Marine and Freshwater
Ecosystems, 19(1), 75–87. https://doi.org/10.1002/aqc.981

Kemp, P. S., Worthington, T. A., Langford, T. E. L., Tree, A. R. J., & Gaywood, M. J. (2012). Qualitative and quantitative effects of
reintroduced beavers on stream fish. Fish and Fisheries, 13(2), 158–181. https://doi.org/10.1111/j.1467-2979.2011.00421.x

Kitchener, A. C., & Conroy, J. W. H. (1997). The history of the Eurasian beaver Castor fiber in Scotland. Mammal Review, 27(2), 95–108.
https://doi.org/10.1111/j.1365-2907.1997.tb00374.x

Kloskowski, J. (2011). Human–wildlife conflicts at pond fisheries in eastern Poland: Perceptions and management of wildlife damage.
European Journal of Wildlife Research, 57(2), 295–304. https://doi.org/10.1007/s10344-010-0426-5

Klotz, R. L. (2007). Influence of beaver ponds on the phosphorus concentration of stream water. Canadian Journal of Fisheries and Aquatic
Sciences, 55(5), 1228–1235. https://doi.org/10.1139/f97-318

Kuehn, R., Schwab, G., Schroeder, W., & Rottmann, O. (2000). Differentiation of Castor fiber and Castor Canadensis by noninvasive molecu-
lar methods. Zoo Biology, 19(6), 511–515. https://doi.org/10.1002/1098-2361(2000)19:6<511::AID-ZOO3>3.0.CO;2-F

Lackey, N. Q., Tysor, D. A., McNay, G. D., Joyner, L., Baker, K. H., & Hodge, C. (2019). Mental health benefits of nature-based recreation: A
systematic review. Annals of Leisure Research, 1–15. https://doi.org/10.1080/11745398.2019.1655459
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